Ascending stairs is challenging following transtibial amputation due to the loss of the ankle muscles, which are critical to human movement. Efforts to improve stair ascent following amputation are hindered by the limited understanding of how the prosthesis and remaining muscles contribute to stair ascent. This study developed a three-dimensional (3D) muscle-actuated forward dynamics simulation of amputee stair ascent to identify the contributions of individual muscles and the passive prosthesis to the biomechanical subtasks of stair ascent. The prosthesis was found to provide vertical propulsion throughout stair ascent, similar to nonamputee plantarflexors. However, the timing differed considerably. The prosthesis also contributed to braking, similar to the nonamputee soleus, but to a greater extent. However, the prosthesis was unable to replicate the functions of nonamputee gastrocnemius, which contributes to forward propulsion during the second half of stance and leg swing initiation. To compensate, the hamstrings and vasti of the residual leg increased their contributions to forward propulsion during the first and second halves of stance, respectively. The prosthesis also contributed to medial control, consistent with the nonamputee soleus but not gastrocnemius. Therefore, prosthesis designs that provide additional vertical propulsion as well as forward propulsion, lateral control, and leg swing initiation at appropriate points in the gait cycle could improve amputee stair ascent. However, because nonamputee soleus and gastrocnemius contribute oppositely to many subtasks, it may be necessary to couple the prosthesis, which functions most similarly to soleus, with targeted rehabilitation programs focused on muscle groups that can compensate for gastrocnemius.

References

References
1.
Allen
,
J. L.
, and
Neptune
,
R. R.
,
2012
, “
Three-Dimensional Modular Control of Human Walking
,”
J. Biomech.
,
45
(
12
), pp.
2157
2163
.
2.
Pandy
,
M. G.
,
Lin
,
Y. C.
, and
Kim
,
H. J.
,
2010
, “
Muscle Coordination of Mediolateral Balance in Normal Walking
,”
J. Biomech.
,
43
(
11
), pp.
2055
2064
.
3.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Zajac
,
F. E.
,
2001
, “
Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
,
34
(
11
), pp.
1387
1398
.
4.
Liu
,
M. Q.
,
Anderson
,
F. C.
,
Pandy
,
M. G.
, and
Delp
,
S. L.
,
2006
, “
Muscles That Support the Body Also Modulate Forward Progression During Walking
,”
J. Biomech.
,
39
(
14
), pp.
2623
2630
.
5.
Houdijk
,
H.
,
Pollmann
,
E.
,
Groenewold
,
M.
,
Wiggerts
,
H.
, and
Polomski
,
W.
,
2009
, “
The Energy Cost for the Step-to-Step Transition in Amputee Walking
,”
Gait Posture
,
30
(
1
), pp.
35
40
.
6.
Genin
,
J. J.
,
Bastien
,
G. J.
,
Franck
,
B.
,
Detrembleur
,
C.
, and
Willems
,
P. A.
,
2008
, “
Effect of Speed on the Energy Cost of Walking in Unilateral Traumatic Lower Limb Amputees
,”
Eur. J. Appl. Physiol.
,
103
(
6
), pp.
655
663
.
7.
Prinsen
,
E. C.
,
Nederhand
,
M. J.
, and
Rietman
,
J. S.
,
2011
, “
Adaptation Strategies of the Lower Extremities of Patients With a Transtibial or Transfemoral Amputation During Level Walking: A Systematic Review
,”
Arch. Phys. Med. Rehabil.
,
92
(
8
), pp.
1311
1325
.
8.
Silverman
,
A. K.
, and
Neptune
,
R. R.
,
2011
, “
Differences in Whole-Body Angular Momentum Between Below-Knee Amputees and Non-Amputees Across Walking Speeds
,”
J. Biomech.
,
44
(
3
), pp.
379
385
.
9.
Sheehan
,
R. C.
,
Beltran
,
E. J.
,
Dingwell
,
J. B.
, and
Wilken
,
J. M.
,
2015
, “
Mediolateral Angular Momentum Changes in Persons With Amputation During Perturbed Walking
,”
Gait Posture
,
41
(
3
), pp.
795
800
.
10.
Nadeau
,
S.
,
McFadyen
,
B. J.
, and
Malouin
,
F.
,
2003
, “
Frontal and Sagittal Plane Analyses of the Stair Climbing Task in Healthy Adults Aged Over 40 Years: What Are the Challenges Compared to Level Walking?
,”
Clin. Biomech.
,
18
(
10
), pp.
950
959
.
11.
DeVita
,
P.
,
Helseth
,
J.
, and
Hortobagyi
,
T.
,
2007
, “
Muscles Do More Positive Than Negative Work in Human Locomotion
,”
J. Exp. Biol.
,
210
(
Pt 19
), pp.
3361
3373
.
12.
Novak
,
A. C.
, and
Brouwer
,
B.
,
2011
, “
Sagittal and Frontal Lower Limb Joint Moments During Stair Ascent and Descent in Young and Older Adults
,”
Gait Posture
,
33
(
1
), pp.
54
60
.
13.
Wilken
,
J. M.
,
Sinitski
,
E. H.
, and
Bagg
,
E. A.
,
2011
, “
The Role of Lower Extremity Joint Powers in Successful Stair Ambulation
,”
Gait Posture
,
34
(
1
), pp.
142
144
.
14.
Powers
,
C. M.
,
Boyd
,
L. A.
,
Torburn
,
L.
, and
Perry
,
J.
,
1997
, “
Stair Ambulation in Persons With Transtibial Amputation: An Analysis of the Seattle LightFoot
,”
J. Rehabil. Res. Dev.
,
34
(
1
), pp.
9
18
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.532.3911&rep=rep1&type=pdf
15.
Schmalz
,
T.
,
Blumentritt
,
S.
, and
Marx
,
B.
,
2007
, “
Biomechanical Analysis of Stair Ambulation in Lower Limb Amputees
,”
Gait Posture
,
25
(
2
), pp.
267
278
.
16.
Alimusaj
,
M.
,
Fradet
,
L.
,
Braatz
,
F.
,
Gerner
,
H. J.
, and
Wolf
,
S. I.
,
2009
, “
Kinematics and Kinetics With an Adaptive Ankle Foot System During Stair Ambulation of Transtibial Amputees
,”
Gait Posture
,
30
(
3
), pp.
356
363
.
17.
Yack
,
J. H.
,
Nielsen
,
D. H.
, and
Shurr
,
D. G.
,
1999
, “
Kinetic Patterns During Stair Ascent in Patients With Transtibial Amputations Using Three Different Prostheses
,”
J. Prosthetics Orthotics
,
11
(
3
), pp.
57
62
.
18.
Sinitski
,
E. H.
,
Hansen
,
A. H.
, and
Wilken
,
J. M.
,
2012
, “
Biomechanics of the Ankle-Foot System During Stair Ambulation: Implications for Design of Advanced Ankle-Foot Prostheses
,”
J. Biomech.
,
45
(
3
), pp.
588
594
.
19.
Agrawal
,
V.
,
Gailey
,
R. S.
,
Gaunaurd
,
I. A.
,
O'Toole
,
C.
, and
Finnieston
,
A. A.
,
2013
, “
Comparison Between Microprocessor-Controlled Ankle/Foot and Conventional Prosthetic Feet During Stair Negotiation in People With Unilateral Transtibial Amputation
,”
J. Rehabil. Res. Dev.
,
50
(
7
), pp.
941
950
.
20.
Torburn
,
L.
,
Schweiger
,
G. P.
,
Perry
,
J.
, and
Powers
,
C. M.
,
1994
, “
Below-Knee Amputee Gait in Stair Ambulation. A Comparison of Stride Characteristics Using Five Different Prosthetic Feet
,”
Clin. Orthop. Relat. Res.
,
303
, pp.
185
192
.
21.
Aldridge
,
J. M.
,
Sturdy
,
J. T.
, and
Wilken
,
J. M.
,
2012
, “
Stair Ascent Kinematics and Kinetics With a Powered Lower Leg System Following Transtibial Amputation
,”
Gait Posture
,
36
(
2
), pp.
291
295
.
22.
Zmitrewicz
,
R. J.
,
Neptune
,
R. R.
, and
Sasaki
,
K.
,
2007
, “
Mechanical Energetic Contributions From Individual Muscles and Elastic Prosthetic Feet During Symmetric Unilateral Transtibial Amputee Walking: A Theoretical Study
,”
J. Biomech.
,
40
(
8
), pp.
1824
1831
.
23.
Silverman
,
A. K.
, and
Neptune
,
R. R.
,
2012
, “
Muscle and Prosthesis Contributions to Amputee Walking Mechanics: A Modeling Study
,”
J. Biomech.
,
45
(
13
), pp.
2271
2278
.
24.
Harper
,
N. G.
,
Wilken
,
J. M.
, and
Neptune
,
R. R.
,
2018
, “
Muscle Function and Coordination of Stair Ascent
,”
ASME J. Biomech. Eng.
,
140
(
1
), p.
011001
.
25.
Lin
,
Y. C.
,
Fok
,
L. A.
,
Schache
,
A. G.
, and
Pandy
,
M. G.
,
2015
, “
Muscle Coordination of Support, Progression and Balance During Stair Ambulation
,”
J. Biomech.
,
48
(
2
), pp.
340
347
.
26.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.
27.
Davy
,
D. T.
, and
Audu
,
M. L.
,
1987
, “
A Dynamic Optimization Technique for Predicting Muscle Forces in the Swing Phase of Gait
,”
J. Biomech.
,
20
(
2
), pp.
187
201
.
28.
Neptune
,
R. R.
,
Wright
,
I. C.
, and
Van Den Bogert
,
A. J.
,
2000
, “
A Method for Numerical Simulation of Single Limb Ground Contact Events: Application to Heel-Toe Running
,”
Comput. Methods Biomech. Biomed. Eng.
,
3
(
4
), pp.
321
334
.
29.
Raasch
,
C. C.
,
Zajac
,
F. E.
,
Ma
,
B.
, and
Levine
,
W. S.
,
1997
, “
Muscle Coordination of Maximum-Speed Pedaling
,”
J. Biomech.
,
30
(
6
), pp.
595
602
.
30.
Winters
,
J. M.
, and
Stark
,
L.
,
1988
, “
Estimated Mechanical Properties of Synergistic Muscles Involved in Movements of a Variety of Human Joints
,”
J. Biomech.
,
21
(
12
), pp.
1027
1041
.
31.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.http://e.guigon.free.fr/rsc/article/Zajac89.pdf
32.
Goffe
,
W. L.
,
Ferrier
,
G. D.
, and
Rogers
,
J.
,
1994
, “
Global Optimization of Statistical Functions With Simulated Annealing
,”
J. Econometrics
,
60
(
1–2
), pp.
65
99
.
33.
Neptune
,
R. R.
,
Sasaki
,
K.
, and
Kautz
,
S. A.
,
2008
, “
The Effect of Walking Speed on Muscle Function and Mechanical Energetics
,”
Gait Posture
,
28
(
1
), pp.
135
143
.
34.
Neptune
,
R. R.
,
Zajac
,
F. E.
, and
Kautz
,
S. A.
,
2004
, “
Muscle Force Redistributes Segmental Power for Body Progression During Walking
,”
Gait Posture
,
19
(
2
), pp.
194
205
.
35.
Lin
,
Y. C.
,
Kim
,
H. J.
, and
Pandy
,
M. G.
,
2011
, “
A Computationally Efficient Method for Assessing Muscle Function During Human Locomotion
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
3
), pp.
436
449
.
36.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2003
, “
Individual Muscle Contributions to Support in Normal Walking
,”
Gait Posture
,
17
(
2
), pp.
159
169
.
37.
Della Croce
,
U.
, and
Bonato
,
P.
,
2007
, “
A Novel Design for an Instrumented Stairway
,”
J. Biomech.
,
40
(
3
), pp.
702
704
.
38.
Wilken
,
J. M.
,
Rodriguez
,
K. M.
,
Brawner
,
M.
, and
Darter
,
B. J.
,
2012
, “
Reliability and Minimal Detectible Change Values for Gait Kinematics and Kinetics in Healthy Adults
,”
Gait Posture
,
35
(
2
), pp.
301
307
.
39.
Dempster
,
W. T.
,
1955
, “
Space Requirements of the Seated Operator: Geometrical, Kinematic, and Mechanical Aspects of the Body With Special Reference to the Limbs
,”
Wright Air Development Center Technical Report
,
Wright-Patterson Air Force Base
,
Dayton, OH
.
40.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.
41.
Wu
,
G.
, and
Cavanagh
,
P. R.
,
1995
, “
ISB Recommendations for Standardization in the Reporting of Kinematic Data
,”
J. Biomech.
,
28
(
10
), pp.
1257
1261
.
42.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D'Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.
43.
Baker
,
R.
,
2001
, “
Pelvic Angles: A Mathematically Rigorous Definition Which Is Consistent With a Conventional Clinical Understanding of the Terms
,”
Gait Posture
,
13
(
1
), pp.
1
6
.
44.
Ramstrand
,
N.
, and
Nilsson
,
K. A.
,
2009
, “
A Comparison of Foot Placement Strategies of Transtibial Amputees and Able-Bodied Subjects During Stair Ambulation
,”
Prosthetics Orthotics Int.
,
33
(
4
), pp.
348
355
.
45.
Kendell
,
C.
,
Lemaire
,
E. D.
,
Dudek
,
N. L.
, and
Kofman
,
J.
,
2010
, “
Indicators of Dynamic Stability in Transtibial Prosthesis Users
,”
Gait Posture
,
31
(
3
), pp.
375
379
.
46.
Zajac
,
F. E.
, and
Gordon
,
M. E.
,
1989
, “
Determining Muscle's Force and Action in Multi-Articular Movement
,”
Exercise Sport Sci. Rev.
,
17
(
1
), pp.
187
230
.http://journals.lww.com/acsm-essr/Citation/1989/00170/Determining_Muscle_s_Force_and_Action_in.9.aspx
47.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2002
, “
Biomechanics and Muscle Coordination of Human Walking. Part I: Introduction to Concepts, Power Transfer, Dynamics and Simulations
,”
Gait Posture
,
16
(
3
), pp.
215
232
.
48.
Silverman
,
A. K.
,
Fey
,
N. P.
,
Portillo
,
A.
,
Walden
,
J. G.
,
Bosker
,
G.
, and
Neptune
,
R. R.
,
2008
, “
Compensatory Mechanisms in Below-Knee Amputee Gait in Response to Increasing Steady-State Walking Speeds
,”
Gait Posture
,
28
(
4
), pp.
602
609
.
You do not currently have access to this content.