Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical aortic valve replacement (SAVR) in high-risk elderly patients with calcified aortic valve disease. All currently food and drug administration approved TAVR devices use tissue valves that were adapted to but not specifically designed for TAVR use. Emerging clinical evidence indicates that these valves may get damaged during crimping and deployment—leading to valvular calcification, thrombotic complications, and limited durability. This impedes the expected expansion of TAVR to lower-risk and younger patients. Viable polymeric valves have the potential to overcome such limitations. We have developed a polymeric SAVR valve, which was optimized to reduce leaflet stresses and offer a thromboresistance profile similar to that of a tissue valve. This study compares the polymeric SAVR valve's hemodynamic performance and mechanical stresses to a new version of the valve—specifically designed for TAVR. Fluid–structure interaction (FSI) models were utilized and the valves' hemodynamics, flexural stresses, strains, orifice area, and wall shear stresses (WSS) were compared. The TAVR valve had 42% larger opening area and 27% higher flow rate versus the SAVR valve, while WSS distribution and mechanical stress magnitudes were of the same order, demonstrating the enhanced performance of the TAVR valve prototype. The TAVR valve FSI simulation and Vivitro pulse duplicator experiments were compared in terms of the leaflets' kinematics and the effective orifice area. The numerical methodology presented can be further used as a predictive tool for valve design optimization for enhanced hemodynamics and durability.

References

References
1.
Bavo
,
A. M.
,
Rocatello
,
G.
,
Iannaccone
,
F.
,
Degroote
,
J.
,
Vierendeels
,
J.
, and
Segers
,
P.
,
2016
, “
Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison Between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation
,”
PLoS One
,
11
(
4
), p.
e0154517
.
2.
Soares
,
J. S.
,
Feaver
,
K. R.
,
Zhang
,
W.
,
Kamensky
,
D.
,
Aggarwal
,
A.
, and
Sacks
,
M. S.
,
2016
, “
Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance
,”
Cardiovasc. Eng. Technol.
,
7
(
4
), pp.
309
351
.
3.
Sardar
,
P.
,
Kundu
,
A.
,
Chatterjee
,
S.
,
Feldman
,
D. N.
,
Owan
,
T.
,
Kakouros
,
N.
,
Nairooz
,
R.
,
Pape
,
L. A.
,
Feldman
,
T.
,
Dawn Abbott
,
J.
, and
Elmariah
,
S.
,
2017
, “
Transcatheter Versus Surgical Aortic Valve Replacement in Intermediate-Risk Patients: Evidence From a Meta-Analysis
,”
Catheterization Cardiovasc. Interventions
,
90
(
3
), pp.
504
515
.
4.
Villablanca
,
P. A.
,
Mathew
,
V.
,
Thourani
,
V. H.
,
Rodés-Cabau
,
J.
,
Bangalore
,
S.
,
Makkiya
,
M.
,
Vlismas
,
P.
,
Briceno
,
D. F.
,
Slovut
,
D. P.
,
Taub
,
C. C.
,
McCarthy
,
P. M.
,
Augoustides
,
J. G.
, and
Ramakrishna
,
H.
,
2016
, “
A Meta-Analysis and Meta-Regression of Long-Term Outcomes of Transcatheter Versus Surgical Aortic Valve Replacement for Severe Aortic Stenosis
,”
Int. J. Cardiol.
,
225
, pp.
234
243
.
5.
Sedrakyan
,
A.
,
Dhruva
,
S. S.
, and
Shuhaiber
,
J.
,
2016
, “
Transcatheter Aortic Valve Replacement in Younger Individuals
,”
JAMA Intern. Med.
,
177
(
2
), pp.
159
160
.
6.
Xuan
,
Y.
,
Krishnan
,
K.
,
Ye
,
J.
,
Dvir
,
D.
,
Guccione
,
J. M.
,
Ge
,
L.
, and
Tseng
,
E. E.
,
2017
, “
Stent and Leaflet Stresses in a 26-Mm First-Generation Balloon-Expandable Transcatheter Aortic Valve
,”
J. Thorac. Cardiovasc. Surg.
,
153
(
5
), pp.
1065
1073
.
7.
Kim
,
H.
,
Lu
,
J.
,
Sacks
,
M. S.
, and
Chandran
,
K. B.
,
2008
, “
Dynamic Simulation of Bioprosthetic Heart Valves Using a Stress Resultant Shell Model
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
262
275
.
8.
Saji
,
M.
, and
Lim
,
D. S.
,
2016
, “
Transcatheter Aortic Valve Replacement in Lower Surgical Risk Patients: Review of Major Trials and Future Perspectives
,”
Curr. Cardiol. Rep.
,
18
(
10
), p.
103
.
9.
Mei
,
S.
,
de Souza Júnior
,
F. S. N.
,
Kuan
,
M. Y. S.
,
Green
,
N. C.
, and
Espino
,
D. M.
,
2016
, “
Hemodynamics Through the Congenitally Bicuspid Aortic Valve: A Computational Fluid Dynamics Comparison of Opening Orifice Area and Leaflet Orientation
,”
Perfusion
,
31
(
8
), pp.
683
690
.
10.
Claiborne
,
T. E.
,
Slepian
,
M. J.
,
Hossainy
,
S.
, and
Bluestein
,
D.
,
2012
, “
Polymeric Trileaflet Prosthetic Heart Valves: Evolution and Path to Clinical Reality
,”
Expert Rev. Med. Devices
,
9
(
6
), pp.
577
594
.
11.
Claiborne
,
T. E.
,
Xenos
,
M.
,
Sheriff
,
J.
,
Chiu
,
W. C.
,
Soares
,
J.
,
Alemu
,
Y.
,
Gupta
,
S.
,
Judex
,
S.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2013
, “
Toward Optimization of a Novel Trileaflet Polymeric Prosthetic Heart Valve Via Device Thrombogenicity Emulation
,”
ASAIO J.
,
59
(
3
), pp.
275
283
.
12.
Alavi
,
S. H.
,
Groves
,
E. M.
, and
Kheradvar
,
A.
,
2014
, “
The Effects of Transcatheter Valve Crimping on Pericardial Leaflets
,”
Ann. Thorac. Surg.
,
97
(
4
), pp.
1260
1266
.
13.
Kiefer
,
P.
,
Gruenwald
,
F.
,
Kempfert
,
J.
,
Aupperle
,
H.
,
Seeburger
,
J.
,
Mohr
,
F. W.
, and
Walther
,
T.
,
2011
, “
Crimping May Affect the Durability of Transcatheter Valves: An Experimental Analysis
,”
Ann. Thorac. Surg.
,
92
(
1
), pp.
155
160
.
14.
Bianchi
,
M.
,
Ghosh
,
R. P.
,
Marom
,
G.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2015
, “
Simulation of Transcatheter Aortic Valve Replacement in Patient-Specific Aortic Roots: Effect of Crimping and Positioning on Device Performance
,”
37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
, Milan, Italy, Aug. 25–29, pp.
282
285
.
15.
Martin
,
C.
, and
Sun
,
W.
,
2016
, “
Transcatheter Valve Underexpansion Limits Leaflet Durability: Implications for Valve-in-Valve Procedures
,”
Ann. Biomed. Eng.
,
45
(
2
), pp.
394
404
.
16.
Li
,
K.
, and
Sun
,
W.
,
2010
, “
Simulated Thin Pericardial Bioprosthetic Valve Leaflet Deformation Under Static Pressure-Only Loading Conditions: Implications for Percutaneous Valves
,”
Ann. Biomed. Eng.
,
38
(
8
), pp.
2690
2701
.
17.
Luraghi
,
G.
,
Wu
,
W.
,
De Gaetano
,
F.
,
Rodriguez Matas
,
J. F.
,
Moggridge
,
G. D.
,
Serrani
,
M.
,
Stasiak
,
J.
,
Costantino
,
M. L.
, and
Migliavacca
,
F.
,
2017
, “
Evaluation of an Aortic Valve Prosthesis: Fluid-Structure Interaction or Structural Simulation?
,”
J. Biomech.
,
58
, pp.
45
51
.
18.
Kamensky
,
D.
,
Hsu
,
M.-C.
,
Yu
,
Y.
,
Evans
,
J. A.
,
Sacks
,
M. S.
, and
Hughes
,
T. J. R.
,
2017
, “
Immersogeometric Cardiovascular Fluid–Structure Interaction Analysis With Divergence-Conforming B-Splines
,”
Comput. Methods Appl. Mech. Eng.
,
314
, pp.
408
472
.
19.
Piatti
,
F.
,
Sturla
,
F.
,
Marom
,
G.
,
Sheriff
,
J.
,
Claiborne
,
T. E.
,
Slepian
,
M. J.
,
Redaelli
,
A.
, and
Bluestein
,
D.
,
2015
, “
Hemodynamic and Thrombogenic Analysis of a Trileaflet Polymeric Valve Using a Fluid-Structure Interaction Approach
,”
J. Biomech.
,
48
(
13
), pp.
3650
3658
.
20.
Gilmanov
,
A.
, and
Sotiropoulos
,
F.
,
2015
, “
Comparative Hemodynamics in an Aorta With Bicuspid and Trileaflet Valves
,”
Theor. Comput. Fluid Dyn.
,
30
(
1–2
), pp.
67
85
.
21.
Marom
,
G.
,
2014
, “
Numerical Methods for Fluid-Structure Interaction Models of Aortic Valves
,”
Arch. Comput. Methods Eng.
,
22
(
4
), pp.
595
620
.
22.
ANSYS
,
2016
,
ANSYS FLUENT 17.2 Theory Guide
,
ANSYS
, Canonsburg, PA.
23.
Zakaria
,
M. S.
,
Ismail
,
F.
,
Tamagawa
,
M.
,
Aziz
,
A. F. A.
,
Wiriadidjaja
,
S.
,
Basri
,
A. A.
, and
Ahmad
,
K. A.
,
2017
, “
Review of Numerical Methods for Simulation of Mechanical Heart Valves and the Potential for Blood Clotting
,”
Med. Biol. Eng. Comput.
,
55
(
9
), pp.
1519
1548
.
24.
Cao
,
K.
,
Atkins
,
S. K.
,
McNally
,
A.
,
Liu
,
J.
, and
Sucosky
,
P.
,
2016
, “
Simulations of Morphotype-Dependent Hemodynamics in Non-Dilated Bicuspid Aortic Valve Aortas
,”
J. Biomech.
,
50
(
4
), pp.
63
70
.
25.
Cao
,
K.
, and
Sucosky
,
P.
,
2017
, “
Computational Comparison of Regional Stress and Deformation Characteristics in Tricuspid and Bicuspid Aortic Valve Leaflets
,”
Int. J. Numer. Method Biomed. Eng.
,
33
(
3
), p. e02798.
26.
Bonsignore
,
C.
,
2012
,
Open Stent Design: Design and Analysis of Self Expanding Cardiovascular Stents
,
Independent Publishing Platform
, Charleston, SC.
27.
Thubrikar
,
M. J.
,
1989
,
The Aortic Valve
,
Taylor & Francis
, Boca Raton, FL, pp.
75
94
.
28.
Alemu
,
Y.
, and
Bluestein
,
D.
,
2007
, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.
29.
Claiborne
,
T. E.
,
Sheriff
,
J.
,
Kuetting
,
M.
,
Steinseifer
,
U.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2013
, “
In Vitro Evaluation of a Novel Hemodynamically Optimized Trileaflet Polymeric Prosthetic Heart Valve
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
0210211
.
30.
Mack
,
M. J.
,
Leon
,
M. B.
,
Smith
,
C. R.
,
Miller
,
D. C.
,
Moses
,
J. W.
,
Tuzcu
,
E. M.
,
Webb
,
J. G.
,
Douglas
,
P. S.
,
Anderson
,
W. N.
,
Blackstone
,
E. H.
,
Kodali
,
S. K.
,
Makkar
,
R. R.
,
Fontana
,
G. P.
,
Kapadia
,
S.
,
Bavaria
,
J.
,
Hahn
,
R. T.
,
Thourani
,
V. H.
,
Babaliaros
,
V.
,
Pichard
,
A.
,
Herrmann
,
H. C.
,
Brown
,
D. L.
,
Williams
,
M.
,
Davidson
,
M. J.
,
Svensson
,
L. G.
, and
Akin
,
J.
, “
5-Year Outcomes of Transcatheter Aortic Valve Replacement or Surgical Aortic Valve Replacement for High Surgical Risk Patients With Aortic Stenosis (PARTNER 1): A Randomised Controlled Trial
,”
Lancet
,
385
(
9986
), pp.
2477
2484
.
31.
Thyregod
,
H. G. H.
,
Steinbrüchel
,
D. A.
,
Ihlemann
,
N.
,
Nissen
,
H.
,
Kjeldsen
,
B. J.
,
Petursson
,
P.
,
Chang
,
Y.
,
Franzen
,
O. W.
,
Engstrøm
,
T.
,
Clemmensen
,
P.
,
Hansen
,
P. B.
,
Andersen
,
L. W.
,
Olsen
,
P. S.
, and
Søndergaard
,
L.
,
2015
, “
Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Severe Aortic Valve Stenosis: 1-Year Results From the All-Comers NOTION Randomized Clinical Trial
,”
J. Am. Coll. Cardiol.
,
65
(
20
), pp.
2184
2194
.
32.
Yousefi
,
A.
,
Bark
,
D. L.
, and
Dasi
,
L. P.
,
2016
, “
Effect of Arched Leaflets and Stent Profile on the Hemodynamics of Tri-Leaflet Flexible Polymeric Heart Valves
,”
Ann. Biomed. Eng.
,
45
(
2
), pp.
464
475
.
33.
Kemp
,
I.
,
Dellimore
,
K.
,
Rodriguez
,
R.
,
Scheffer
,
C.
,
Blaine
,
D.
,
Weich
,
H.
, and
Doubell
,
A.
,
2013
, “
Experimental Validation of the Fluid–Structure Interaction Simulation of a Bioprosthetic Aortic Heart Valve
,”
Australas. Phys. Eng. Sci. Med.
,
36
(
3
), pp.
363
373
.
34.
Martin
,
C.
, and
Sun
,
W.
,
2015
, “
Comparison of Transcatheter Aortic Valve and Surgical Bioprosthetic Valve Durability: A Fatigue Simulation Study
,”
J. Biomech.
,
48
(
12
), pp.
3026
3034
.
35.
Sun
,
W.
,
Li
,
K.
, and
Sirois
,
E.
,
2010
, “
Simulated Elliptical Bioprosthetic Valve Deformation: Implications for Asymmetric Transcatheter Valve Deployment
,”
J. Biomech.
,
43
(
16
), pp.
3085
3090
.
36.
Schoen
,
F. J.
,
Fernandez
,
J.
,
Gonzalez-Lavin
,
L.
, and
Cernaianu
,
A.
,
1987
, “
Causes of Failure and Pathologic Findings in Surgically Removed Ionescu-Shiley Standard Bovine Pericardial Heart Valve Bioprostheses: Emphasis on Progressive Structural Deterioration
,”
Circulation
,
76
(
3
), pp.
618
627
.
37.
Hilbert
,
S. L.
,
Ferrans
,
V. J.
, and
Swanson
,
W. M.
,
1986
, “
Optical Methods for the Nondestructive Evaluation of Collagen Morphology in Bioprosthetic Heart Valves
,”
J. Biomed. Mater. Res.
,
20
(
9
), pp.
1411
1421
.
38.
Joda
,
A.
,
Jin
,
Z.
,
Haverich
,
A.
,
Summers
,
J.
, and
Korossis
,
S.
,
2016
, “
Multiphysics Simulation of the Effect of Leaflet Thickness Inhomogeneity and Material Anisotropy on the Stress–Strain Distribution on the Aortic Valve
,”
J. Biomech.
,
49
(
12
), pp.
2502
2512
.
You do not currently have access to this content.