The purpose of the current study was to investigate the robustness of dynamic simulation results in the presence of uncertainties resulting from application of a scaled-generic musculoskeletal model instead of a subject-specific model as well as the effect of the choice of simulation method on the obtained muscle forces. The performed sensitivity analysis consisted of the following multibody parameter modifications: maximum isometric muscle forces, number of muscles, the hip joint center location, segment masses, as well as different dynamic simulation methods, namely static optimization (SO) with three different criteria and a computed muscle control (CMC) algorithm (hybrid approach combining forward and inverse dynamics). Twenty-four different models and fifty-five resultant dynamic simulation data sets were analyzed. The effects of model perturbation on the magnitude and profile of muscle forces were compared. It has been shown that estimated muscle forces are very sensitive to model parameters. The greatest impact was observed in the case of the force magnitude of the muscles generating high forces during gait (regardless of the modification introduced). However, the force profiles of those muscles were preserved. Relatively large differences in muscle forces were observed for different simulation techniques, which included both magnitude and profile of muscle forces. Personalization of model parameters would affect the resultant muscle forces and seems to be necessary to improve general accuracy of the estimated parameters. However, personalization alone will not ensure high accuracy due to the still unresolved muscle force sharing problem.

References

References
1.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
1999
, “
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions
,”
Comput. Methods Biomech. Biomed. Eng.
,
2
(
3
), pp.
201
231
.
2.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.
3.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2010
, “
Optimality Principles for Model-Based Prediction of Human Gait
,”
J. Biomech.
,
43
(
6
), pp.
1055
1060
.
4.
Lloyd
,
D. G.
, and
Besier
,
T. F.
,
2003
, “
An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo
,”
J. Biomech.
,
36
(
6
), pp.
765
776
.
5.
Shourijeh
,
M. S.
,
Smale
,
K. B.
,
Potvin
,
B. M.
, and
Benoit
,
D. L.
,
2016
, “
A Forward-Muscular Inverse-Skeletal Dynamics Framework for Human Musculoskeletal Simulations
,”
J. Biomech.
,
49
(
9
), pp.
1718
1723
.
6.
Meyer
,
A. J.
,
Eskinazi
,
I.
,
Jackson
,
J. N.
,
Rao
,
A. V.
,
Patten
,
C.
, and
Fregly
,
B. J.
,
2016
, “
Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions
,”
Front. Bioeng. Biotechnol.
,
4
(
77
), pp. 1–6.https://www.ncbi.nlm.nih.gov/pubmed/27790612
7.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.
8.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
De Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Modell. Pract. Theory
,
14
(
8
), pp.
1100
1111
.
9.
Fregly
,
B. J.
,
Boninger
,
M. L.
, and
Reinkensmeyer
,
D. J.
,
2012
, “
Personalized Neuromusculoskeletal Modeling to Improve Treatment of Mobility Impairments: A Perspective From European Research Sites
,”
J. NeuroEng. Rehabil.
,
9
(
1
), p.
18
.
10.
Blemker
,
S. S.
,
Asakawa
,
D. S.
,
Gold
,
G. E.
, and
Delp
,
S. L.
,
2007
, “
Image-Based Musculoskeletal Modeling: Applications, Advances, and Future Opportunities
,”
J. Magn. Reson. Imaging
,
25
(
2
), pp.
441
451
.
11.
Arnold
,
A. S.
,
Asakawa
,
D.
, and
Delp
,
S.
,
2000
, “
Do the Hamstrings and Adductors Contribute to Excessive Internal Rotation of the Hip in Persons With Cerebral Palsy?
,”
Gait Posture
,
11
(
3
), pp.
181
190
.
12.
Scheys
,
L.
,
Desloovere
,
K.
,
Suetens
,
P.
, and
Jonkers
,
I.
,
2011
, “
Level of Subject-Specific Detail in Musculoskeletal Models Affects Hip Moment Arm Length Calculation During Gait in Pediatric Subjects With Increased Femoral Anteversion
,”
J. Biomech.
,
44
(
7
), pp.
1346
1353
.
13.
Taddei
,
F.
,
Martelli
,
S.
,
Valente
,
G.
,
Leardini
,
A.
,
Benedetti
,
M.
,
Manfrini
,
M.
, and
Viceconti
,
M.
,
2012
, “
Femoral Loads During Gait in a Patient With Massive Skeletal Reconstruction
,”
Clin. Biomech.
,
27
(
3
), pp.
273
280
.
14.
Świątek-Najwer
,
E.
,
Będziński
,
R.
,
Dragan
,
S. Ł.
, and
Krysztoforski
,
K.
,
2012
, “
Investigation of Lower Limb Mechanical Axis Using 3D Sonography and Magnetic Resonance
,”
Measurement
,
45
(
4
), pp.
702
710
.
15.
Krysztoforski
,
K.
,
Krowicki
,
P.
,
Świątek-Najwer
,
E.
,
Będziński
,
R.
, and
Keppler
,
P.
,
2011
, “
Noninvasive Ultrasonic Measuring System for Bone Geometry Examination
,”
Int. J. Med. Rob.
,
7
(
1
), pp.
85
95
.
16.
Scheys
,
L.
,
Desloovere
,
K.
,
Spaepen
,
A.
,
Suetens
,
P.
, and
Jonkers
,
I.
,
2011
, “
Calculating Gait Kinematics Using MR-Based Kinematic Models
,”
Gait Posture
,
33
(
2
), pp.
158
164
.
17.
Scheys
,
L.
,
Van Campenhout
,
A.
,
Spaepen
,
A.
,
Suetens
,
P.
, and
Jonkers
,
I.
,
2008
, “
Personalized MR-Based Musculoskeletal Models Compared to Rescaled Generic Models in the Presence of Increased Femoral Anteversion: Effect on Hip Moment Arm Lengths
,”
Gait Posture
,
28
(
3
), pp.
358
365
.
18.
Correa
,
T. A.
,
Baker
,
R.
,
Graham
,
H. K.
, and
Pandy
,
M. G.
,
2011
, “
Accuracy of Generic Musculoskeletal Models in Predicting the Functional Roles of Muscles in Human Gait
,”
J. Biomech.
,
44
(
11
), pp.
2096
2105
.
19.
Lenaerts
,
G.
,
De Groote
,
F.
,
Demeulenaere
,
B.
,
Mulier
,
M.
,
Van der Perre
,
G.
,
Spaepen
,
A.
, and
Jonkers
,
I.
,
2008
, “
Subject-Specific Hip Geometry Affects Predicted Hip Joint Contact Forces During Gait
,”
J. Biomech.
,
41
(
6
), pp.
1243
1252
.
20.
Lenaerts
,
G.
,
Bartels
,
W.
,
Gelaude
,
F.
,
Mulier
,
M.
,
Spaepen
,
A.
,
Van der Perre
,
G.
, and
Jonkers
,
I.
,
2009
, “
Subject-Specific Hip Geometry and Hip Joint Centre Location Affects Calculated Contact Forces at the Hip During Gait
,”
J. Biomech.
,
42
(
9
), pp.
1246
1251
.
21.
Żuk
,
M.
,
Świątek-Najwer
,
E.
, and
Pezowicz
,
C.
,
2014
, “
Hip Joint Centre Localization: Evaluation of Formal Methods and Effects on Joint Kinematics
,”
Information Technologies in Biomedicine
, Vol. 12,
E.
Piętka
,
E.
Kawa
,
W.
Więcławek
, eds.,
Springer
,
Cham, Switzerland
, pp.
56
67
.
22.
Żuk
,
M.
, and
Pezowicz
,
C.
,
2015
, “
Kinematic Analysis of a Six-Degrees-of-Freedom Model Based on ISB Recommendation: A Repeatability Analysis and Comparison With Conventional Gait Model
,”
Appl. Bionics Biomech.
,
2015
(
12
), pp.
1165
1174
.
23.
Lund
,
M. E.
,
de Zee
,
M.
,
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2012
, “
On Validation of Multibody Musculoskeletal Models
,”
J. Eng. Med.
,
226
(
2
), pp.
82
94
.
24.
Ackland
,
D. C.
,
Lin
,
Y. C.
, and
Pandy
,
M. G.
,
2012
, “
Sensitivity of Model Predictions of Muscle Function to Changes in Moment Arms and Muscle-Tendon Properties: A Monte Carlo Analysis
,”
J. Biomech.
,
45
(
8
), pp.
1463
1471
.
25.
De Groote
,
F.
,
Van Campen
,
A.
,
Jonkers
,
I.
, and
De Schutter
,
J.
,
2010
, “
Sensitivity of Dynamic Simulations of Gait and Dynamometer Experiments to Hill Muscle Model Parameters of Knee Flexors and Extensors
,”
J. Biomech.
,
43
(
10
), pp.
1876
1883
.
26.
Xiao
,
M.
, and
Higginson
,
J.
,
2010
, “
Sensitivity of Estimated Muscle Force in Forward Simulation of Normal Walking
,”
J. Appl. Biomech.
,
26
(
2
), pp.
142
149
.
27.
Raikova
,
R. T.
, and
Prilutsky
,
B. I.
,
2001
, “
Sensitivity of Predicted Muscle Forces to Parameters of the Optimization-Based Human Leg Model Revealed by Analytical and Numerical Analyses
,”
J. Biomech.
,
34
(
10
), pp.
1243
1255
.
28.
Redl
,
C.
,
Gfoehler
,
M.
, and
Pandy
,
M. G.
,
2007
, “
Sensitivity of Muscle Force Estimates to Variations in Muscle-Tendon Properties
,”
Human Mov Sci.
,
26
(
2
), pp.
306
319
.
29.
Scovil
,
C. Y.
, and
Ronsky
,
J. L.
,
2006
, “
Sensitivity of a Hill-Based Muscle Model to Perturbations in Model Parameters
,”
J. Biomech.
,
39
(
11
), pp.
2055
2063
.
30.
Valente
,
G.
,
Pitto
,
L.
,
Testi
,
D.
,
Seth
,
A.
,
Delp
,
S. L.
,
Stagni
,
R.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2014
, “
Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?
,”
PLos One
,
9
(11), p. e112625.
31.
Myers
,
C. A.
,
Laz
,
P. J.
,
Shelburne
,
K. B.
, and
Davidson
,
B. S.
,
2015
, “
A Probabilistic Approach to Quantify the Impact of Uncertainty Propagation in Musculoskeletal Simulations
,”
Ann. Biomed. Eng.
,
43
(
5
), pp.
1098
1111.
32.
Pearsall
,
D. J.
, and
Costigan
,
P. A.
,
1999
, “
The Effect of Segment Parameter Error on Gait Analysis Results
,”
Gait Posture
,
9
(
3
), pp.
173
183
.
33.
Rao
,
G.
,
Amarantini
,
D.
,
Berton
,
E.
, and
Favier
,
D.
,
2006
, “
Influence of Body Segments' Parameters Estimation Models on Inverse Dynamics Solutions During Gait
,”
J. Biomech.
,
39
(
8
), pp.
1531
1536
.
34.
Silva
,
M. P.
, and
Ambrósio
,
J. A.
,
2004
, “
Sensitivity of the Results Produced by the Inverse Dynamic Analysis of a Human Stride to Perturbed Input Data
,”
Gait Posture
,
19
(
1
), pp.
35
49
.
35.
Pàmies-Vilà
,
R.
,
Font-Llagunes
,
J. M.
,
Cuadrado
,
J.
, and
Alonso
,
F. J.
,
2012
, “
Analysis of Different Uncertainties in the Inverse Dynamic Analysis of Human Gait
,”
Mech. Mach. Theory
,
58
, pp.
153
164
.
36.
Kiernan
,
D.
,
Walsh
,
M.
,
O'Sullivan
,
R.
,
O'Brien
,
T.
, and
Simms
,
C. K.
,
2014
, “
The Influence of Estimated Body Segment Parameters on Predicted Joint Kinetics During Diplegic Cerebral Palsy Gait
,”
J. Biomech.
,
47
(
1
), pp.
284
288
.
37.
Riemer
,
R.
,
Hsiao-Wecksler
,
E. T.
, and
Zhang
,
X.
,
2008
, “
Uncertainties in Inverse Dynamics Solutions: A Comprehensive Analysis and an Application to Gait
,”
Gait Posture
,
27
(
4
), pp.
578
588
.
38.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
,
2007
, “
Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait?
,”
IEEE Trans. Biomed. Eng.
,
54
(
5
), pp.
782
793
.
39.
Wesseling
,
M.
,
de Groote
,
F.
, and
Jonkers
,
I.
,
2014
, “
The Effect of Perturbing Body Segment Parameters on Calculated Joint Moments and Muscle Forces During Gait
,”
J. Biomech.
,
47
(
2
), pp.
596
601
.
40.
Żuk
,
M.
, and
Pezowicz
,
C.
,
2016
, “
The Influence of Uncertainty in Body Segment Mass on Calculated Joint Moments and Muscle Forces
,”
Information Technologies in Biomedicine
, Vol. 472,
E.
Pitka
,
E.
Kawa
, and
W.
Więcławek
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
349
359
.
41.
Carbone
,
V.
,
van der Krogt
,
M. M.
,
Koopman
,
H.
, and
Verdonschot
,
N.
,
2012
, “
Sensitivity of Subject-Specific Models to Errors in Musculo-Skeletal Geometry
,”
J. Biomech.
,
45
(
14
), pp.
2476
2480
.
42.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), pp.
321
328
.
43.
Delp
,
S. L.
,
Load
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.
44.
Yamaguchi
,
G. T.
, and
Zajac
,
F. E.
,
1990
, “
A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism
,”
J. Biomech.
,
22
(
1
), pp.
1
10
.
45.
John
,
C. T.
,
Seth
,
A.
,
Schwartz
,
M. H.
, and
Delp
,
S. L.
,
2012
, “
Contributions of Muscles to Mediolateral Ground Reaction Force Over a Range of Walking Speeds
,”
J. Biomech.
,
45
(
14
), pp.
2438
2443
.
46.
Żuk
,
M.
,
Syczewska
,
M.
, and
Pezowicz
,
C.
,
2018
, “
Use of the Surface Electromyography for a Quantitative Trend Validation of Estimated Muscle Forces
,”
Biocybernetics Biomed. Eng.
,
38
(
2
), pp.
243
250
.
47.
McConville
,
J. T.
,
Clauser
,
C. E.
, and
Churchill
,
T. D.
,
1980
, “
Anthropometric Relationships of Body and Body Segment Moments of Inertia
,”
Anthropology Research Project
,
Yellow Springs
,
OH
.
48.
W. T.
Dempster
,
1955
, “
Space Requirements of the Seated Operator: Geometrical, Kinematic, and Mechanical Aspects of the Body, With Special Reference to the Limbs
,” Wright Air Development Center, Air Research and Development Command, Wright-Patterson Air Force Base, OH, Technical Report No. 55-159.
49.
Davis
,
R. B.
,
Õunpuu
,
S.
,
Tyburski
,
D.
, and
Gage
,
J. R.
,
1991
, “
A Gait Analysis Data Collection and Reduction Technique
,”
Hum Mov Sci.
,
10
(
5
), pp.
575
587
.
50.
Sangeux
,
M.
,
Pillet
,
H.
, and
Skalli
,
W.
,
2014
, “
Which Method of Hip Joint Centre Localisation Should Be Used in Gait Analysis?
,”
Gait Posture
,
40
(
1
), pp.
20
25
.
51.
Hicks
,
J.
,
Uchida
,
T.
,
Seth
,
A.
,
Rajagopal
,
A.
, and
Delp
,
S.
,
2012
, “
Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement
,”
ASME J. Biomech. Eng.
,
137
(2), p. 020905.
52.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H. F. J. M.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.
53.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthopaedic Res.
,
30
(
4
), pp.
503
513
.
You do not currently have access to this content.