Accurate characterization of the craniomaxillofacial (CMF) skeleton using finite element (FE) modeling requires representation of complex geometries, heterogeneous material distributions, and physiological loading. Musculature in CMF FE models are often modeled with simple link elements that do not account for fiber bundles (FBs) and their differential activation. Magnetic resonance (MR) diffusion-tensor imaging (DTI) enables reconstruction of the three-dimensional (3D) FB arrangement within a muscle. However, 3D quantitative validation of DTI-generated FBs is limited. This study compares 3D FB arrangement in terms of pennation angle (PA) and fiber bundle length (FBL) generated through DTI in a human masseter to manual digitization. CT, MR-proton density, and MR-DTI images were acquired from a single cadaveric specimen. Bone and masseter surfaces were reconstructed from CT and MR-proton density images, respectively. PA and FBL were estimated from FBs reconstructed from MR-DTI images using a streamline tracking (STT) algorithm (n = 193) and FBs identified through manual digitization (n = 181) and compared using the Mann–Whitney test. DTI-derived PAs did not differ from the digitized data (p = 0.411), suggesting that MR-DTI can be used to simulate FB orientation and the directionality of transmitted forces. Conversely, a significant difference was observed in FBL (p < 0.01) which may have resulted due to the tractography stopping criterion leading to early tract termination and greater length variability. Overall, this study demonstrated that DTI can yield muscle FB orientation data suitable to representative directionality of physiologic muscle loading in patient-specific CMF FE modeling.

References

References
1.
Cioffi
,
I.
,
Gallo
,
L. M.
,
Palla
,
S.
,
Erni
,
S.
, and
Farella
,
M.
,
2012
, “
Macroscopic Analysis of Human Masseter Compartments Assessed by Magnetic Resonance Imaging
,”
Cells Tissues Organs
,
195
(
5
), pp.
465
472
.
2.
Röhrle
,
O.
, and
Pullan
,
A. J.
,
2007
, “
Three-Dimensional Finite Element Modelling of Muscle Forces During Mastication
,”
J. Biomech.
,
40
(
15
), pp.
3363
3372
.
3.
Kim
,
S. Y.
,
Boynton
,
E. L.
,
Ravichandiran
,
K.
,
Fung
,
L. Y.
,
Bleakney
,
R.
, and
Agur
,
A. M.
,
2007
, “
Three-Dimensional Study of the Musculotendinous Architecture of Supraspinatus and Its Functional Correlations
,”
Clin. Anat.
,
20
(
6
), pp.
648
655
.
4.
Fattah
,
A. Y.
,
Ravichandiran
,
K.
,
Zuker
,
R. M.
, and
Agur
,
A. M. R.
,
2013
, “
A Three-Dimensional Study of the Musculotendinous and Neurovascular Architecture of the Gracilis Muscle: Application to Functional Muscle Transfer
,”
J. Plast. Reconstr. Aesthetic Surg.
,
66
(
9
), pp.
1230
1237
.
5.
Li
,
Z.
,
Mogk
,
J. P. M.
,
Lee
,
D.
,
Bibliowicz
,
J.
, and
Agur
,
A. M.
,
2015
, “
Development of an Architecturally Comprehensive Database of Forearm Flexors and Extensors From a Single Cadaveric Specimen
,”
Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
,
3
(
1
), pp.
3
12
.
6.
Lee
,
D.
,
Li
,
Z.
,
Sohail
,
Q. Z.
,
Jackson
,
K.
,
Fiume
,
E.
, and
Agur
,
A.
,
2015
, “
A Three-Dimensional Approach to Pennation Angle Estimation for Human Skeletal Muscle
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
13
), pp.
1474
1484
.
7.
Cleveland
,
G.
,
Chang
,
D. C.
,
Hazlewood
,
C. F.
, and
Rorschach
,
H. E.
,
1976
, “
Nuclear Magnetic Resonance Measurement of Skeletal Muscle. Anisotropy of the Diffusion Coefficient of the Intracellular Water
,”
Biophys. J.
,
16
(
9
), pp.
1043
1053
.
8.
Damon
,
B. M.
,
Ding
,
Z.
,
Anderson
,
A. W.
,
Freyer
,
A. S.
, and
Gore
,
J. C.
,
2002
, “
Validation of Diffusion Tensor MRI-Based Muscle Fiber Tracking
,”
Magn. Reson. Med.
,
48
(
1
), pp.
97
104
.
9.
Blemker
,
S. S.
,
Asakawa
,
D. S.
,
Gold
,
G. E.
, and
Delp
,
S. L.
,
2007
, “
Image-Based Musculoskeletal Modeling: Applications, Advances, and Future Opportunities
,”
J. Magn. Reson. Imaging
,
25
(
2
), pp.
441
451
.
10.
Lansdown
,
D. A.
,
Ding
,
Z.
,
Wadington
,
M.
,
Hornberger
,
J. L.
, and
Damon
,
B. M.
,
2007
, “
Quantative Diffusion Tensor MRI-Based Fiber Tracking Human Skeletal Muscle
,”
J. Appl. Physiol.
,
2675
(
2
), pp.
673
681
.
11.
Heemskerk
,
A. M.
,
Sinha
,
T. K.
,
Wilson
,
K. J.
,
Ding
,
Z.
, and
Damon
,
B. M.
,
2010
, “
Repeatability of DTI-Based Skeletal Muscle Fiber Tracking
,”
NMR Biomed.
,
23
(
3
), pp.
294
303
.
12.
Sinha
,
U.
,
Sinha
,
S.
,
Hodgson
,
J. A.
, and
Edgerton
,
R. V.
,
2011
, “
Human Soleus Muscle Architecture at Different Ankle Joint Angles From Magnetic Resonance Diffusion Tensor Imaging
,”
J. Appl. Physiol.
,
110
(
3
), pp.
807
819
.
13.
Damon
,
B. M.
,
Heemskerk
,
A. M.
, and
Ding
,
Z.
,
2012
, “
Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters
,”
Magn. Reson. Imaging
,
30
(
5
), pp.
589
600
.
14.
Heemskerk
,
A. M.
,
Strijkers
,
G. J.
,
Vilanova
,
A.
,
Drost
,
M. R.
, and
Nicolay
,
K.
,
2005
, “
Determination of Mouse Skeletal Muscle Architecture Using Three-Dimensional Diffusion Tensor Imaging
,”
Magn. Reson. Med.
,
53
(
6
), pp.
1333
1340
.
15.
Schenk
,
P.
,
Siebert
,
T.
,
Hiepe
,
P.
,
Güllmar
,
D.
,
Reichenbach
,
J. R.
,
Wick
,
C.
,
Blickhan
,
R.
, and
Böl
,
M.
,
2013
, “
Determination of Three-Dimensional Muscle Architectures: Validation of the DTI-Based Fiber Tractography Method by Manual Digitization
,”
J. Anat.
,
223
(
1
), pp.
61
68
.
16.
Froeling
,
M.
,
Nederveen
,
A. J.
,
Heijtel
,
D. F. R.
,
Lataster
,
A.
,
Bos
,
C.
,
Nicolay
,
K.
,
Maas
,
M.
,
Drost
,
M. R.
, and
Strijkers
,
G. J.
,
2012
, “
Diffusion-Tensor MRI Reveals the Complex Muscle Architecture of the Human Forearm
,”
J. Magn. Reson. Imaging
,
36
(
1
), pp.
237
248
.
17.
Weijs
,
W. A.
, and
Hillen
,
B.
,
1985
, “
Physiological Cross-Section of the Human Jaw Muscles
,”
Acta Anat. (Basel)
,
121
(
1
), pp.
31
35
.
18.
Van Eijden
,
T. M.
,
Korfage
,
J. A.
, and
Brugman
,
P.
,
1997
, “
Architecture of the Human Jaw-Closing and Jaw-Opening Muscles
,”
Anat. Rec.
,
248
(
3
), pp.
464
474
.
19.
Jones
,
D. K.
,
Horsfield
,
M. A.
, and
Simmons
,
A.
,
1999
, “
Optimal Strategies for Measuring Diffusion in Anisotropic Systems by Magnetic Resonance Imaging
,”
Magn. Reson. Med.
,
42
(
3
), pp.
515
525
.
20.
Buades
,
A.
,
Coll
,
B.
, and
Morel
,
J.-M.
,
2005
, “
A Review of Image Denoising Algorithms, With a New One
,”
SIAM J. Multiscale Model. Simul. A SIAM Interdisci-Plinary J.
,
4
(
2
), pp.
490
530
.
21.
Basser
,
P. J.
,
Pajevic
,
S.
,
Pierpaoli
,
C.
,
Duda
,
J.
, and
Aldroubi
,
A.
,
2000
, “
In Vivo Fiber Tractography Using DT-MRI Data
,”
Magn. Reson. Med.
,
44
(
4
), pp.
625
632
.
22.
Oudeman
,
J.
,
Mazzoli
,
V.
,
Marra
,
M. A. M. A.
,
Nicolay
,
K.
,
Maas
,
M.
,
Verdonschot
,
N.
,
Sprengers
,
A. M. A. M.
,
Nederveen
,
A. J. A. J.
,
Strijkers
,
G. J. G. J.
, and
Froeling
,
M.
,
2016
, “
A Novel Diffusion‐Tensor MRI Approach for Skeletal Muscle Fascicle Length Measurements
,”
Physiol. Rep.
,
4
(
24
), p.
e13012
.
23.
Gans
,
C.
, and
de Vree
,
F.
,
1987
, “
Functional Bases of Fibre Length and Angulation in Muscle
,”
J. Morphol.
,
192
(
1
), pp.
63
85
.
24.
Van Donkelaar
,
C. C.
,
Kretzers
,
L. J. G.
,
Bovendeerd
,
P. H. M.
,
Lataster
,
L. M. A.
,
Nicolay
,
K.
,
Janssen
,
J. D.
, and
Drost
,
M. R.
,
1999
, “
Diffusion Tensor Imaging in Biomechanical Studies of Skeletal Muscle Function
,”
J. Anat.
,
194
(
1
), pp.
79
88
.
25.
Bolsterlee
,
B.
,
D'Souza
,
A.
,
Gandevia
,
S. C.
, and
Herbert
,
R. D.
,
2017
, “
How Does Passive Lengthening Change the Architecture of the Human Medial Gastrocnemius Muscle?
,”
J. Appl. Physiol.
,
122
(
4
), pp.
727
738
.
26.
Heemskerk
,
A. M.
,
Sinha
,
T. K.
,
Wilson
,
K. J.
,
Ding
,
Z.
, and
Damon
,
B. M.
,
2009
, “
Quantitative Assessment of DTI-Based Muscle Fiber Tracking and Optimal Tracking Parameters
,”
Magn. Reson. Med.
,
61
(
2
), pp.
467
472
.
27.
Bolsterlee
,
B.
,
Veeger
,
H. E. J.
,
Van Der Helm
,
F. C. T.
,
Gandevia
,
S. C.
, and
Herbert
,
R. D.
,
2015
, “
Comparison of Measurements of Medial Gastrocnemius Architectural Parameters From Ultrasound and Diffusion Tensor Images
,”
J. Biomech.
,
48
(
6
), pp.
1133
1140
.
28.
Rane
,
S.
, and
Duong
,
T. Q.
,
2011
, “
Comparison of In Vivo and Ex Vivo Diffusion Tensor Imaging in Rhesus Macaques at Short and Long Diffusion Times
,”
Open Neuroimag. J.
,
5
, pp.
172
178
.
29.
D'Arceuil
,
H.
, and
de Crespigny
,
A.
,
2007
, “
The Effects of Brain Tissue Decomposition on Diffusion Tensor Imaging and Tractography
,”
Neuroimage
,
36
(
1
), pp.
64
68
.
30.
Stikov
,
N.
,
Perry
,
L. M.
,
Mezer
,
A.
,
Rykhlevskaia
,
E.
,
Wandell
,
B. A.
,
Pauly
,
J. M.
, and
Dougherty
,
R. F.
,
2011
, “
Bound Pool Fractions Complement Diffusion Measures to Describe White Matter Micro and Macrostructure
,”
Neuroimage
,
54
(
2
), pp.
1112
1121
.
31.
Aherne
,
W.
,
Ayyar
,
D. R.
,
Clarke
,
P. A.
, and
Walton
,
J. N.
,
1971
, “
Muscle Fibre Size in Normal Infants, Children and Adolescents. An Autopsy Study
,”
J. Neurol. Sci.
,
14
(
2
), pp.
171
182
.
32.
Zhi
,
L.
,
Ebrahimi
,
E.
,
Falcinelli
,
C.
, and
Agur
,
A.
,
2017
, “
Comparison of the Musculoaponeurotic Architecture of Masseter Muscle of an Infant and Adult
,”
Clin. Anat.
,
30
(
8
), pp.
1118
1145
.
33.
Damon
,
B. M.
,
2008
, “
Effects of Image Noise in Muscle DT-MRI Assessed Using Numerical Simulations
,”
Magn. Reson. Med.
,
60
(
4
), pp.
934
944
.
34.
Lee
,
D. H.
,
Park
,
J. W.
,
Park
,
S. H.
, and
Hong
,
C.
,
2015
, “
Have You Ever Seen the Impact of Crossing Fiber in DTI?: Demonstration of the Corticospinal Tract Pathway
,”
PLoS One
,
10
(
7
), pp.
1
5
.
35.
Auriat
,
A. M.
,
Borich
,
M. R.
,
Snow
,
N. J.
,
Wadden
,
K. P.
, and
Boyd
,
L. A.
,
2015
, “
Comparing a Diffusion Tensor and Non-Tensor Approach to White Matter Fiber Tractography in Chronic Stroke
,”
NeuroImage Clin.
,
7
, pp.
771
781
.
36.
Behrens
,
T. E. J.
,
Berg
,
H. J.
,
Jbabdi
,
S.
,
Rushworth
,
M. F. S.
, and
Woolrich
,
M. W.
,
2007
, “
Probabilistic Diffusion Tractography With Multiple Fibre Orientations: What Can We Gain?
,”
Neuroimage
,
34
(
1
), pp.
144
155
.
37.
Gaudy
,
J. F.
,
Zouaoui
,
A.
,
Bravetti
,
P.
,
Charrier
,
J. L.
, and
Guettaf
,
A.
,
2000
, “
Functional Organization of the Human Masseter Muscle
,”
Surg. Radiol. Anat.
,
22
(
3–4
), pp.
181
190
.
38.
Brunel
,
G.
,
El Haddioui
,
A.
,
Bravetti
,
P.
,
Zouaoui
,
A.
, and
Gaudy
,
J.-F.
,
2003
, “
General Organization of the Human Intra-Masseteric Aponeuroses: Changes With Ageing
,”
Surg. Radiol. Anat.
,
25
(
3–4
), pp.
270
283
.
39.
Kupczik
,
K.
,
Stark
,
H.
,
Mundry
,
R.
,
Neininger
,
F. T.
,
Heidlauf
,
T.
, and
Röhrle
,
O.
,
2015
, “
Reconstruction of Muscle Fascicle Architecture From Iodine-Enhanced microCT Images: A Combined Texture Mapping and Streamline Approach
,”
J. Theor. Biol.
,
382
, pp.
34
43
.
40.
Pakdel
,
A.
,
Fialkov
,
J.
, and
Whyne
,
C. M.
,
2016
, “
High Resolution Bone Material Property Assignment Yields Robust Subject Specific Finite Element Models of Complex Thin Bone Structures
,”
J. Biomech.
,
49
(
9
), pp.
1454
1460
.
41.
Goto
,
T. K.
,
Langenbach
,
G. E. J.
, and
Hannam
,
A. G.
,
2001
, “
Length Changes in the Human Masseter Muscle After Jaw Movement
,”
Anat. Rec.
,
262
(
3
), pp.
293
300
.
42.
Gans
,
C.
, and
Gaunt
,
A. S.
,
1991
, “
Muscle Architecture in Relation to Function
,”
J. Biomech.
,
24
(
Suppl. 1
), pp.
53
65
.
43.
McNab
,
J. A.
, and
Miller
,
K. L.
,
2010
, “
Steady-State Diffusion-Weighted Imaging: Theory, Acquisition and Analysis
,”
NMR Biomed.
,
23
(
7
), pp.
781
793
.
You do not currently have access to this content.