Anomalous aortic origin of coronary arteries (AAOCA) is a congenital disease that can lead to cardiac ischemia during intense physical activity. Although AAOCA is responsible for sudden cardiac death (SCD) among young athletes and soldiers, the mechanisms underlying the coronary occlusion during physical effort still have to be clarified. The present study investigates the correlation between geometric features of the anomaly and coronary lumen narrowing under aortic root dilatations. Idealized parametric computer-aided designed (CAD) models of the aortic root with anomalous and normal coronaries are created and static finite element (FE) simulations of increasing aortic root expansions are carried out. Different coronary take-off angles and intramural penetrations are investigated to assess their role on coronary lumen narrowing. Results show that increasing aortic and coronary pressures lead to lumen expansion in normal coronaries, particularly in the proximal tract, while the expansion of the anomalous coronaries is impaired especially at the ostium. Concerning the geometric features of the anomaly, acute take-off angles cause elongated coronary ostia, with an eccentricity increasing with aortic expansion; the impact of the coronary intramural penetration on the lumen narrowing is limited. The present study provides a proof of concept of the biomechanical reasons underlying the lumen narrowing in AAOCA during aortic expansion, promoting the role of computational simulations as a tool to assess the mechanisms of this pathology.

References

1.
Click
,
R. L.
,
Holmes
,
D. R.
,
Vlietstra
,
R. E.
,
Kosinski
,
A. S.
,
Kronmal
,
R. A.
, and
The Participants of the Coronary Artery Surgery Study (CASS)
,
1989
, “
Anomalous Coronary Arteries: Location, Degree of Atherosclerosis and Effect on Survival: A Report From the Coronary Artery Surgery Study
,”
J. Am. Coll. Cardiol.
,
13
(
3
), pp.
531
537
.
2.
Cheitlin
,
M. D.
,
Castro
,
C. M. D.
, and
Mcallister
,
H. A.
,
1974
, “
Sudden Death as a Complication of Anomalous Left Coronary Origin From the Anterior Sinus of Valsalva
,”
Circulation
,
50
(
4
), pp.
780
787
.
3.
Taylor
,
A. J.
,
Byers
,
J. P.
,
Cheitlin
,
M. D.
, and
Virmani
,
R.
,
1997
, “
Anomalous Right or Left Coronary Artery From the Contralateral Coronary Sinus: High-Risk Abnormalities in the Initial Coronary Artery Course and Heterogeneous Clinical Outcomes
,”
Am. Heart J.
,
133
(
4
), pp.
428
435
.
4.
Angelini
,
P.
,
2002
, “
Coronary Artery Anomalies Current Clinical Issues
,”
Texas Heart Inst. J.
,
29
(
4
), pp.
271
278
.
5.
Amado
,
J.
,
Carvalho
,
M.
,
Ferreira
,
W.
,
Gago
,
P.
,
Gama
,
V.
, and
Bettencourt
,
N.
,
2016
, “
Coronary Arteries Anomalous Aortic Origin on a Computed Tomography Angiography Population: Prevalence, Characteristics and Clinical Impact
,”
Int. J. Cardiovasc. Imaging
,
32
(
6
), pp.
983
990
.
6.
Penalver
,
J. M.
,
Mosca
,
R. S.
,
Weitz
,
D.
, and
Phoon
,
C. K.
,
2012
, “
Anomalous Aortic Origin of Coronary Arteries From the opposite Sinus: A Critical Appraisal of Risk
,”
BMC Cardiovasc. Disorders
,
12
(
1
), p.
83
.
7.
Kimbiris
,
D.
,
Iskandrian
,
A. S.
,
Segal
,
B. L.
, and
Bemis
,
C. E.
,
1978
, “
Anomalous Aortic Origin of Coronary Arteries
,”
Circulation
,
58
(
4
), pp.
606
615
.
8.
Pelliccia
,
A.
,
Spataro
,
A.
, and
Maron
,
B. J.
,
1993
, “
Prospective Echocardiographic Screening for Coronary Artery Anomalies in 1,360 Elite Competitive Athletes
,”
Am. J. Cardiol.
,
72
(
12
), pp.
978
979
.
9.
Topaz
,
O.
,
DeMarchena
,
E. J.
,
Perin
,
E.
,
Sommer
,
L. S.
,
Mallon
,
S. M.
, and
Chahine
,
R. A.
,
1992
, “
Anomalous Coronary Arteries: Angiographic Findings in 80 Patients
,”
Int. J. Cardiol.
,
34
(
2
), pp.
129
138
.
10.
Yamanaka
,
O.
, and
Hobbs
,
R. E.
,
1990
, “
Coronary Artery Anomalies in 126,595 Patients Undergoing Coronary Arteriography
,”
Catheterization Cardiovasc. Diagn.
,
21
(
1
), pp.
28
40
.
11.
Maron
,
B. J.
,
Shirani
,
J.
,
Poliac
,
L. C.
,
Mathenge
,
R.
,
Roberts
,
W. C.
, and
Mueller
,
F. O.
,
1996
, “
Sudden Death in Young Competitive Athletes: Clinical, Demographic, and Pathological Profiles
,”
JAMA
,
276
(
3
), pp.
199
204
.
12.
Kim
,
S. Y.
,
Seo
,
J. B.
,
Do
,
K.-H.
,
Heo
,
J.-N.
,
Lee
,
J. S.
,
Song
,
J.-W.
,
Choe
,
Y. H.
,
Kim
,
T. H.
,
Yong
,
H. S.
,
Choi
,
S. I.
,
Song
,
K.-S.
, and
Lim
,
T.-H.
,
2006
, “
Coronary Artery Anomalies: Classification and ECG-Gated Multi Detector Row CT Findings With Angiographic Correlation
,”
RadioGraphics
,
26
(
2
), pp.
317
333
.
13.
Fabozzo
,
A.
,
DiOrio
,
M.
,
Newburger
,
J. W.
,
Powell
,
A. J.
,
Liu
,
H.
,
Fynn-Thompson
,
F.
,
Sanders
,
S. P.
,
Pigula
,
F. A.
,
del Nido
,
P. J.
, and
Nathan
,
M.
,
2016
, “
Anomalous Aortic Origin of Coronary Arteries: A Single-Center Experience
,”
Seminars Thorac. Cardiovasc. Surg.
,
28
(
4
), pp.
791
800
.
14.
Roberts
,
W. C.
,
Siegel
,
R. J.
, and
Zipes
,
D. P.
,
1982
, “
Origin of the Right Coronary Artery From the Left Sinus of Valsalva and Its Functional Consequences: Analysis of 10 Necropsy Patients
,”
Am. J. Cardiol.
,
49
(
4
), pp.
863
868
.
15.
Lee
,
B. Y.
,
2009
, “
Anomalous Right Coronary Artery From the Left Coronary Sinus With an Interarterial Course: Is It Really Dangerous?
,”
Korean Circ. J.
,
39
(
5
), pp.
175
179
.
16.
Lee
,
H.-J.
,
Hong
,
Y. J.
,
Kim
,
H. Y.
,
Lee
,
J.
,
Hur
,
J.
,
Choi
,
B. W.
,
Chang
,
H.-J.
,
Nam
,
J. E.
,
Choe
,
K. O.
, and
Kim
,
Y. J.
,
2012
, “
Anomalous Origin of the Right Coronary Artery From the Left Coronary Sinus With an Interarterial Course: Subtypes and Clinical Importance
,”
Radiology
,
262
(
1
), pp.
101
108
.
17.
Kaushal
,
S.
,
Backer
,
C. L.
,
Popescu
,
A. R.
,
Walker
,
B. L.
,
Russell
,
H. M.
,
Koenig
,
P. R.
,
Rigsby
,
C. K.
, and
Mavroudis
,
C.
,
2011
, “
Intramural Coronary Length Correlates With Symptoms in Patients With Anomalous Aortic Origin of the Coronary Artery
,”
Ann. Thorac. Surg.
,
92
(
3
), pp.
986
992
.
18.
Angelini
,
P.
,
Walmsley
,
R. P.
,
Libreros
,
A.
, and
Ott
,
D. A.
,
2006
, “
Symptomatic Anomalous Origination of the Left Coronary Artery From the opposite Sinus of Valsalva
,”
Texas Heart Inst. J.
,
33
(
2
), pp.
171
179
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524694/
19.
Angelini
,
P.
,
Velasco
,
J. A.
,
Ott
,
D.
, and
Khoshnevis
,
G. R.
,
2003
, “
Anomalous Coronary Artery Arising From the opposite Sinus: Descriptive Features and Pathophysiologic Mechanisms, as Documented by Intravascular Ultrasonography
,”
J. Invasive Cardiol.
,
15
(
9
), pp.
507
514
.https://www.invasivecardiology.com/articles/anomalous-coronary-artery-arising-opposite-sinus-descriptive-features-and-pathophysiologic
20.
Virmani
,
R.
,
Chun
,
P. K.
,
Goldstein
,
R. E.
,
Robinowitz
,
M.
, and
Mcallister
,
H. A.
,
1984
, “
Acute Takeoffs of the Coronary Arteries along the Aortic Wall and Congenital Coronary Ostial Valve-like Ridges: Association With Sudden Death
,”
J. Am. Coll. Cardiol.
,
3
(
3
), pp.
766
771
.
21.
Morganti
,
S.
,
Valentini
,
A.
,
Favalli
,
V.
,
Serio
,
A.
,
Gambarin
,
F. I.
,
Vella
,
D.
,
Mazzocchi
,
L.
,
Massetti
,
M.
,
Auricchio
,
F.
, and
Arbustini
,
E.
,
2013
, “
Aortic Root 3D Parametric Morphological Model From 2D-Echo Images
,”
Comput. Biol. Med.
,
43
(
12
), pp.
2196
2204
.
22.
Aparci
,
M.
,
Erdal
,
M.
,
Isilak
,
Z.
,
Yalcin
,
M.
,
Uz
,
O.
,
Arslan
,
Z.
, and
Kardesoglu
,
E.
,
2013
, “
Enlargement of the Aorta: An Occupational Disease?
,”
Exp. Clin. Cardiol.
,
18
(
2
), pp.
93
97
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718583/
23.
de Tullio
,
M. D.
,
Pedrizzetti
,
G.
, and
Verzicco
,
R.
,
2011
, “
On the Effect of Aortic Root Geometry on the Coronary Entry-Flow After a Bileaflet Mechanical Heart Valve Implant: A Numerical Study
,”
Acta Mech.
,
216
(
1–4
), pp.
147
163
.
24.
D'Andrea
,
A.
,
Cocchia
,
R.
,
Riegler
,
L.
,
Scarafile
,
R.
,
Salerno
,
G.
,
Gravino
,
R.
,
Vriz
,
O.
,
Citro
,
R.
,
Limongelli
,
G.
,
Di Salvo
,
G.
,
Cuomo
,
S.
,
Caso
,
P.
,
Russo
,
M. G.
,
Calabr
,
R.
, and
Bossone
,
E.
,
2010
, “
Aortic Root Dimensions in Elite Athletes
,”
Am. J. Cardiol.
,
105
(
11
), pp.
1629
1634
.
25.
Conti
,
C. A.
,
Votta
,
E.
,
Della Corte
,
A.
,
Del Viscovo
,
L.
,
Bancone
,
C.
,
Cotrufo
,
M.
, and
Redaelli
,
A.
,
2010
, “
Dynamic Finite Element Analysis of the Aortic Root From MRI-Derived Parameters
,”
Med. Eng. Phys.
,
32
(
2
), pp.
212
221
.
26.
Marom
,
G.
,
Haj-Ali
,
R.
,
Raanani
,
E.
,
Schfers
,
H.-J.
, and
Rosenfeld
,
M.
,
2012
, “
A Fluid Structure Interaction Model of the Aortic Valve With Coaptation and Compliant Aortic Root
,”
Med. Biol. Eng. Comput.
,
50
(
2
), pp.
173
182
.
27.
Auricchio
,
F.
,
Conti
,
M.
,
Demertzis
,
S.
, and
Morganti
,
S.
,
2011
, “
Finite Element Analysis of Aortic Root Dilation: A New Procedure to Reproduce Pathology Based on Experimental Data
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
10
), pp.
875
882
.
28.
Ovcharenko
,
E. A.
,
Klyshnikov
,
K. U.
,
Vlad
,
A. R.
,
Sizova
,
I. N.
,
Kokov
,
A. N.
,
Nushtaev
,
D. V.
,
Yuzhalin
,
A. E.
, and
Zhuravleva
,
I. U.
,
2014
, “
Computer-Aided Design of the Human Aortic Root
,”
Comput. Biol. Med.
,
54
, pp.
109
115
.
29.
Grande
,
K. J.
,
Cochran
,
R. P.
,
Reinhall
,
P. G.
, and
Kunzelman
,
K. S.
,
1998
, “
Stress Variations in the Human Aortic Root and Valve: The Role of Anatomic Asymmetry
,”
Ann. Biomed. Eng.
,
26
(
4
), pp.
534
545
.
30.
Grigioni
,
M.
,
Daniele
,
C.
,
Del Gaudio
,
C.
,
Morbiducci
,
U.
,
Balducci
,
A.
,
D'Avenio
,
G.
, and
Barbaro
,
V.
,
2005
, “
Three-Dimensional Numeric Simulation of Flow Through an Aortic Bileaflet Valve in a Realistic Model of Aortic Root
,”
ASAIO J.
,
51
(
3
), pp.
176
183
.
31.
Gradus-Pizlo
,
I.
,
Bigelow
,
B.
,
Mahomed
,
Y.
,
Sawada
,
S. G.
,
Rieger
,
K.
, and
Feigenbaum
,
H.
,
2003
, “
Left Anterior Descending Coronary Artery Wall Thickness Measured by High-Frequency Transthoracic and Epicardial Echocardiography Includes Adventitia
,”
Am. J. Cardiol.
,
91
(
1
), pp.
27
32
.
32.
Dodge
,
J. T.
,
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
,
1992
, “
Lumen Diameter of Normal Human Coronary Arteries. influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation
,”
Circulation
,
86
(
1
), pp.
232
246
.
33.
Funabashi
,
N.
,
Kobayashi
,
Y.
,
Perlroth
,
M.
, and
Rubin
,
G. D.
,
2003
, “
Coronary Artery: Quantitative Evaluation of Normal Diameter Determined With Electron-Beam Ct Compared With Cine Coronary Angiography initial Experience 1
,”
Radiology
,
226
(
1
), pp.
263
271
.
34.
Tops
,
L. F.
,
Wood
,
D. A.
,
Delgado
,
V.
,
Schuijf
,
J. D.
,
Mayo
,
J. R.
,
Pasupati
,
S.
,
Lamers
,
F. P.
,
van der Wall
,
E. E.
,
Schalij
,
M. J.
,
Webb
,
J. G.
, and
Bax
,
J. J.
,
2008
, “
Noninvasive Evaluation of the Aortic Root With Multislice Computed Tomography: Implications for Transcatheter Aortic Valve Replacement
,”
JACC: Cardiovasc. Imaging
,
1
(
3
), pp.
321
330
.
35.
Grani
,
C.
,
Benz
,
D. C.
,
Schmied
,
C.
,
Vontobel
,
J.
,
Mikulicic
,
F.
,
Possner
,
M.
,
Clerc
,
O. F.
,
Stehli
,
J.
,
Fuchs
,
T. A.
,
Pazhenkottil
,
A. P.
,
Gaemperli
,
O.
,
Buechel
,
R. R.
, and
Kaufmann
,
P. A.
,
2017
, “
Hybrid Ccta/Spect Myocardial Perfusion Imaging Findings in Patients With Anomalous Origin of Coronary Arteries From the opposite Sinus and Suspected Concomitant Coronary Artery Disease
,”
J. Nucl. Cardiol.
,
24
(
1
), pp.
226
234
.
36.
Cheezum
,
M. K.
,
Ghoshhajra
,
B.
,
Bittencourt
,
M. S.
,
Hulten
,
E. A.
,
Bhatt
,
A.
,
Mousavi
,
N.
,
Shah
,
N. R.
,
Valente
,
A. M.
,
Rybicki
,
F. J.
,
Steigner
,
M.
,
Hainer
,
J.
,
MacGillivray
,
T.
,
Hoffmann
,
U.
,
Abbara
,
S.
, Di
Carli
,
M. F.
, DeFaria Y. D.,
Landzberg
,
M.
,
Liberthson
,
R.
, and
Blankstein
,
R.
,
2016
, “
Anomalous Origin of the Coronary Artery Arising From the Opposite Sinus: Prevalence and Outcomes in Patients Undergoing Coronary Cta
,”
Eur. Heart J.-Cardiovasc. Imaging
,
18
(
2
), pp.
224
235
.
37.
Koch
,
T.
,
Reddy
,
B.
,
Zilla
,
P.
, and
Franz
,
T.
,
2010
, “
Aortic Valve Leaflet Mechanical Properties Facilitate Diastolic Valve Function
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
2
), pp.
225
234
.
38.
Stefanadis
,
C.
,
Stratos
,
C.
,
Boudoulas
,
H.
,
Kourouklis
,
C.
, and
Toutouzas
,
P.
,
1990
, “
Distensibility of the Ascending Aorta: Comparison of Invasive and Non-Invasive Techniques in Healthy Men and in Men With Coronary Artery Disease
,”
Eur. Heart J.
,
11
(
11
), pp.
990
996
.
39.
Patrianakos
,
A. P.
,
Karakitsos
,
D. N.
,
de Groot
,
E.
,
Parthenakis
,
F. I.
,
Daphnis
,
E. K.
, and
Vardas
,
P. E.
,
2006
, “
Alteration of Proximal Aorta Biophysical Properties in Patients With End Stage Renal Disease
,”
Heart
,
92
(
2
), pp.
228
232
.
40.
Chaichana
,
T.
,
Sun
,
Z.
, and
Jewkes
,
J.
,
2011
, “
Computation of Hemodynamics in the Left Coronary Artery With Variable Angulations
,”
J. Biomech.
,
44
(
10
), pp.
1869
1878
.
41.
Kroeker
,
E. J.
, and
Wood
,
E. H.
,
1955
, “
Comparison of Simultaneously Recorded Central and Peripheral Arterial Pressure Pulses During Rest, Exercise and Tilted Position in Man
,”
Circ. Res.
,
3
(
6
), pp.
623
632
.
42.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
,
2008
, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
,
46
(
11
), p.
1097
.
43.
Lorenz
,
E. C.
,
Mookadam
,
F.
,
Mookadam
,
M.
,
Moustafa
,
S.
, and
Zehr
,
K. J.
,
2006
, “
A Systematic Overview of Anomalous Coronary Anatomy and an Examination of the Association With Sudden Cardiac Death
,”
Rev. Cardiovasc. Med.
,
7
(
4
), pp.
205
213
.http://medreviews.com/journal/reviews-in-cardiovascular-medicine/vol/7/no/4/systematic-overview-anomalous-coronary-anatomy-and-examination-association-sudden-cardiac-death
44.
Mery
,
C. M.
,
Lawrence
,
S. M.
,
Krishnamurthy
,
R.
,
Sexson-Tejtel
,
S. K.
,
Carberry
,
K. E.
,
McKenzie
,
E. D.
, and
Fraser
,
C. D.
,
2014
, “
Anomalous Aortic Origin of a Coronary Artery: Toward a Standardized Approach
,”
Semin. Thorac. Cardiovasc. Surg.
,
26
(
2
), pp.
110
122
.
45.
Angelini
,
P.
,
1999
,
Coronary Artery Anomalies: A Comprehensive Approach
,
Lippincott Williams & Wilkins
,
Philadelphia, PA
.
46.
Krupiński
,
M.
,
Urbańczyk-Zawadzka
,
M.
,
Laskowicz
,
B.
,
Irzyk
,
M.
,
Banyś
,
R.
,
Klimeczek
,
P.
,
Gruszczyńska
,
K.
, and
Baron
,
J.
,
2014
, “
Anomalous Origin of the Coronary Artery From the Wrong Coronary Sinus Evaluated With Computed Tomography: High-Risk Anatomy and Its Clinical Relevance
,”
Eur. Radiol.
,
24
(
10
), pp.
2353
2359
.
47.
Lee
,
J.
,
Choe
,
Y. H.
,
Kim
,
H.-J.
, and
Park
,
J. E.
,
2003
, “
Magnetic Resonance Imaging Demonstration of Anomalous Origin of the Right Coronary Artery From the Left Coronary Sinus Associated With Acute Myocardial Infarction
,”
J. Comput. Assisted Tomogr.
,
27
(
2
), pp.
289
291
.
48.
Lim
,
M. J.
,
Forsberg
,
M. J.
,
Lee
,
R.
, and
Kern
,
M. J.
,
2004
, “
Hemodynamic Abnormalities Across an Anomalous Left Main Coronary Artery Assessment: Evidence for a Dynamic Ostial Obstruction
,”
Catheterization Cardiovasc. Interventions
,
63
(
3
), pp.
294
298
.
49.
Garg
,
N.
,
Tewari
,
S.
,
Kapoor
,
A.
,
Gupta
,
D. K.
, and
Sinha
,
N.
,
2000
, “
Primary Congenital Anomalies of the Coronary Arteries: A Coronary Arteriographic Study
,”
Int. J. Cardiol.
,
74
(
1
), pp.
39
46
.
50.
Cademartiri
,
F.
,
Schuijf
,
J. D.
,
Mollet
,
N. R.
,
Malagutti
,
P.
,
Runza
,
G.
,
Bax
,
J. J.
, and
de Feyter
,
P. J.
,
2005
, “
Multislice CT Coronary Angiography: How to Do It and What is the Current Clinical Performance?
,”
Eur. J. Nucl. Med. Mol. Imaging
,
32
(
11
), pp.
1337
1347
.
51.
Soncini
,
M.
,
Votta
,
E.
,
Zinicchino
,
S.
,
Burrone
,
V.
,
Mangini
,
A.
,
Lemma
,
M.
,
Antona
,
C.
, and
Redaelli
,
A.
,
2009
, “
Aortic Root Performance After Valve Sparing Procedure: A Comparative Finite Element Analysis
,”
Med. Eng. Phys.
,
31
(
2
), pp.
234
243
.
52.
Kim
,
H.
,
Vignon-Clementel
,
I.
,
Coogan
,
J.
,
Figueroa
,
C.
,
Jansen
,
K.
, and
Taylor
,
C.
,
2010
, “
Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3195
3209
.
53.
Nobari
,
S.
,
Mongrain
,
R.
,
Leask
,
R.
, and
Cartier
,
R.
,
2013
, “
The Effect of Aortic Wall and Aortic Leaflet Stiffening on Coronary Hemodynamic: A Fluid–Structure Interaction Study
,”
Med. Biol. Eng. Comput.
,
51
(
8
), pp.
923
936
.
54.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
,
2007
, “
Computational Method of Inverse Elastostatics for Anisotropic Hyperelastic Solids
,”
Int. J. Numer. Methods Eng.
,
69
(
6
), pp.
1239
1261
.
55.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
A Machine Learning Approach as a Surrogate of Finite Element Analysis-Based Inverse Method to Estimate the Zero-Pressure Geometry of Human Thoracic Aorta
,”
Int. J. Numer. Methods Biomed. Eng
, p.
e3103
(epub).
56.
Sturla
,
F.
,
Votta
,
E.
,
Stevanella
,
M.
,
Conti
,
C. A.
, and
Redaelli
,
A.
,
2013
, “
Impact of Modeling Fluidstructure Interaction in the Computational Analysis of Aortic Root Biomechanics
,”
Med. Eng. Phys.
,
35
(
12
), pp.
1721
1730
.
57.
Ranga
,
A.
,
Mongrain
,
R.
,
Galaz
,
R. M.
,
Biadillah
,
Y.
, and
Cartier
,
R.
,
2004
, “
Large-Displacement 3D Structural Analysis of an Aortic Valve Model With Nonlinear Material Properties
,”
J. Med. Eng. Technol.
,
28
(
3
), pp.
95
103
.
58.
Reddy
,
K. G.
,
Suneja
,
R.
,
Nair
,
R. N.
,
Dhawale
,
P.
, and
Hodgson
,
J. M.
,
1993
, “
Measurement by Intracoronary Ultrasound of In Vivo Arterial Distensibility Within Atherosclerotic Lesions
,”
Am. J. Cardiol.
,
72
(
17
), pp.
1232
1237
.
59.
Weissman
,
N. J.
,
Palacios
,
I. F.
, and
Weyman
,
A. E.
,
1995
, “
Dynamic Expansion of the Coronary Arteries: Implications for Intravascular Ultrasound Measurements
,”
Am. Heart J.
,
130
(
1
), pp.
46
51
.
60.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
289
(
5
), pp.
H2048
H2058
.
61.
Karimi
,
A.
,
Navidbakhsh
,
M.
,
Razaghi
,
R.
, and
Haghpanahi
,
M.
,
2014
, “
A Computational Fluid-Structure Interaction Model for Plaque Vulnerability Assessment in Atherosclerotic Human Coronary Arteries
,”
J. Appl. Phys.
,
115
(
14
), p.
144702
.
62.
Lally
,
C.
,
Reid
,
A. J.
, and
Prendergast
,
P. J.
,
2004
, “
Elastic Behavior of Porcine Coronary Artery Tissue Under Uniaxial and Equibiaxial Tension
,”
Ann. Biomed. Eng.
,
32
(
10
), pp.
1355
1364
.
63.
Arzani
,
A.
, and
Mofrad
,
M. R.
,
2017
, “
A Strain-Based Finite Element Model for Calcification Progression in Aortic Valves
,”
J. Biomech.
,
65
, pp.
216
220
.
64.
Hsu
,
M.-C.
,
Kamensky
,
D.
,
Bazilevs
,
Y.
,
Sacks
,
M. S.
, and
Hughes
,
T. J.
,
2014
, “
Fluid–Structure Interaction Analysis of Bioprosthetic Heart Valves: Significance of Arterial Wall Deformation
,”
Comput. Mech.
,
54
(
4
), pp.
1055
1071
.
65.
Auricchio
,
F.
,
Conti
,
M.
,
Morganti
,
S.
, and
Totaro
,
P.
,
2011
, “
A Computational Tool to Support Pre-Operative Planning of Stentless Aortic Valve Implant
,”
Med. Eng. Phys.
,
33
(
10
), pp.
1183
1192
.
66.
Lansac
,
E.
,
Lim
,
H.-S.
,
Shomura
,
Y.
,
Lim
,
K. H.
,
Rice
,
N. T.
,
Goetz
,
W. A.
, and
Duran
,
C. M.
,
2005
, “
Aortic Root Dynamics are Asymmetric
,”
J. Heart Valve Dis.
,
14
(
3
), pp.
400
407
.https://www.icr-heart.com/?cid=1555
67.
Feldman
,
C. L.
, and
Stone
,
P. H.
,
2000
, “
Intravascular Hemodynamic Factors Responsible for Progression of Coronary Atherosclerosis and Development of Vulnerable Plaque
,”
Curr. Opin. Cardiol.
,
15
(
6
), pp.
430
440
.
You do not currently have access to this content.