Augments are a common solution for treating bone loss in revision total knee arthroplasty (TKA) and industry is providing to surgeons several options, in terms of material, thickness, and shapes. Actually, while the choice of the shape and the thickness is mainly dictated by the bone defect, no proper guidelines are currently available to select the optimal material for a specific clinical situation. Nevertheless, different materials could induce different bone responses and, later, potentially compromise implant stability and performances. Therefore, in this study, a biomechanical analysis is performed by means of finite element modeling about existing features for augment designs. Based upon a review of available products at present, the following augments features were analyzed: position (distal/proximal and posterior), thickness (5, 10, and 15 mm), and material (bone cement, porous metal, and solid metal). For all analyzed configurations, bone stresses were investigated in different regions and compared among all configurations and the control model for which no augments were used. Results show that the use of any kind of augment usually induces a change in bone stresses, especially in the region close to the bone cut. The porous metal presents result very close to cement ones; thus, it could be considered as a good alternative for defects of any size. Solid metal has the least satisfying results inducing the highest changes in bone stress. The results of this study demonstrate that material stiffness of the augment should be as close as possible to bone properties for allowing the best implant performances.

References

References
1.
Bozic
,
K. J.
,
Kurtz
,
S. M.
,
Lau
,
E.
,
Ong
,
K.
,
Chiu
,
V.
,
Vail
,
T. P.
,
Rubash
,
H. E.
, and
Berry
,
D. J.
,
2010
, “
The Epidemiology of Revision Total Knee Arthroplasty in the United States
,”
Clin. Orthop. Relat. Res.
,
468
(
1
), pp.
5
51
.
2.
Sheng
,
P. Y.
,
Konttinen
,
L.
,
Lehto
,
M.
,
Ogino
,
D.
,
Jamsen
,
E.
,
Nevalainen
,
J.
,
Pajamäki
,
J.
,
Halonen
,
P.
, and
Konttinen
,
Y. T.
,
2006
, “
Revision Total Knee Arthroplasty: 1990 Through 2002. A Review of the Finnish Arthroplasty Registry
,”
J. Bone Jt. Surg. Am.
,
88
(
7
), pp.
1425
1430
.
3.
Whiteside
,
L. A.
,
2003
, “
Cementless Revision Total Knee Arthroplasty
,”
The Adult Knee
,
J. J.
Callaghan
,
A. G.
Rosenberg
,
H. E.
Rubash
,
P. T.
Simonian
, and
T. L.
Wickiewicz
, eds.,
Lippincott-Williams & Wilkins
,
Philadelphia, PA
, pp.
1465
1472
.
4.
Whittaker
,
J. P.
,
Dharmarajan
,
R.
, and
Toms
,
A. D.
,
2008
, “
The Management of Bone Loss in Revision Total Knee Replacement
,”
J. Bone Jt. Surg. Br.
,
90
(
8
), pp.
981
987
.
5.
Huten
,
D.
,
2013
, “
Femorotibial Bone Loss During Revision Total Knee Arthroplasty
,”
Orthop. Traumatol. Surg. Res.
,
99S
(
1
), pp.
S22
S33
.
6.
Cuckler
,
J. M.
,
2004
, “
Bone Loss in Total Knee Arthroplasty: Graft Augment and Options
,”
J Arthroplasty
,
19
(
4 Suppl. 1
), pp.
56
58
.
7.
Radnay
,
C. S.
, and
Scuderi
,
G. R.
,
2006
, “
Management of Bone Loss: Augments, Cones, Offset Stems
,”
Clin. Orthop.
,
446
, pp.
83
92
.
8.
Altchek
,
D.
,
Sculco
,
T. P.
, and
Rawlins
,
B.
,
1989
, “
Autogenous Bone Grafting for Severe Angular Deformity in Total Knee Arthroplasty
,”
J Arthroplasty
,
4
(
2
), pp.
151
155
.
9.
Insall
,
J. N.
,
2006
, “
Surgical Techniques and Instrumentation in Total Knee Arthroplasty
,”
Surgery of the Knee
,
J. N.
Insall
, ed.,
4th ed.
,
Churchill Livingstone
,
New York
, p.
1455
.
10.
Fehring
,
T. K.
,
Christie
,
M. J.
,
Lavernia
,
C.
,
Mason
,
J. B.
,
McAuley
,
J. P.
,
MacDonald
,
S. J.
, and
Springer, B. D.
,
2008
, “
Revision Total Knee Arthroplasty: Planning, Management, and Controversies
,”
Instr. Course Lect.
,
57
, pp.
341
363
.
11.
Munjal
,
S.
,
Phillips
,
M. J.
, and
Krackow
,
K. A.
,
2001
, “
Revision Total Knee Arthroplasty: Planning, Controversies, and Management—Infection
,”
Instr. Course Lect.
,
50
, pp.
367
377
.
12.
Clarke
,
H. D.
, and
Scuderi
,
G. R.
,
2001
, “
Revision Total Knee Arthroplasty: Planning, Management, Controversies, and Surgical Approaches
,”
Instr. Course Lect.
,
50
, pp.
359
365
.
13.
Completo
,
A.
,
Simoes
,
J. A.
, and
Fonseca
,
F.
,
2009
, “
Revision Total Knee Arthroplasty: The Influence of Femoral Stems in Load Sharing and Stability
,”
Knee
,
16
(
4
), pp.
275
279
.
14.
Yi
,
Y. Q.
,
Chun
,
H. Y.
,
Kwong
,
Y. C.
, and
Fu
,
Y. N.
,
2012
, “
Review Article: Treatments for Bone Loss in Revision Total Knee Arthroplasty
,”
J. Orthop. Surg.
,
20
(
1
), pp.
78
86
.
15.
Lee
,
J. K.
, and
Choi
,
C. H.
,
2011
, “
Management of Tibial Bone Defects With Metal Augmentation in Primary Total Knee Replacement
,”
J. Bone Jt. Surg. Br.
,
93
(
11
), pp.
1493
6
.
16.
Mountney
,
J.
,
Wilson
,
D. R.
,
Paice
,
M.
,
Masri
,
B. A.
, and
Greidanus
,
N. V.
,
2008
, “
The Effect of an Augmentation Patella Prosthesis Versus Patelloplasty on Revision Patellar Kinematics and Quadriceps Tendon Force: An Ex Vivo Study
,”
J. Arthroplasty
,
23
(
8
), pp.
1219
1231
.
17.
Completo
,
A.
,
Simoes
,
J. A.
,
Fonseca
,
F.
, and
Oliveira
,
M.
,
2008
, “
The Influence of Different Tibial Stem Designs in Load Sharing and Stability at the Cement-Bone Interface in Revision TKA
,”
Knee
,
15
(
3
), pp.
227
232
.
18.
Saragaglia
,
D.
,
Estour
,
G.
,
Nemer
,
C.
, and
Colle
,
P. E.
,
2009
, “
Revision of 33 Unicompartmental Knee Prostheses Using Total Knee Arthroplasty: Strategy and Results
,”
Int. Orthop.
,
33
(
4
), pp.
969
974
.
19.
Parvizi
,
J.
,
Marrs
,
J.
, and
Morrey
,
B. F.
,
2003
, “
Total Knee Arthroplasty for Neuropathic (Charcot) Joints
,”
Clin. Orthop. Relat. Res.
,
416
, pp.
145
150
.
20.
Rand
,
J. A.
,
2003
, “
Treatment of the Patella at Reimplantation for Septic Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
416
, pp.
105
109
.
21.
van Loon
,
C. J.
,
de Waal Malefijt
,
M. C.
,
Buma
,
P.
,
Stolk
,
T.
,
Verdonschot
,
N.
,
Tromp
,
A. M.
,
Huiskes
,
R.
, and
Barneveld
,
A.
,
2000
, “
Autologous Morsellised Bone Grafting Restores Uncontained Femoral Bone Defects in Knee Arthroplasty
, An Vivo Study Horses,”
J. Bone Jt. Surg. Br.
,
82
(
3
), pp.
436
444
.
22.
van Loon
,
C. J.
,
de Waal Malefijt
,
M. C.
,
Verdonschot
,
N.
,
Buma
,
P.
,
van der Aa
,
A. J.
, and
Huiskes
,
R.
,
1999
, “
Morsellized Bone Grafting Compensates for Femoral Bone Loss in Revision Total Knee Arthroplasty. An Experimental Study
,”
Biomaterials
,
20
(
1
), pp.
85
89
.
23.
Stuchin
,
S. A.
,
1993
, “
Allografting in Total Knee Replacement Arthroplasty
,”
Semin. Arthroplasty
,
4
(
2
), pp.
117
122
.
24.
Pianigiani
,
S.
, and
Innocenti
,
B.
,
2015
, “
The Use of Finite Element Modeling to Improve Biomechanical Research on Knee Prosthesis
,”
New Developments in Knee Prosthesis Research
,
J
,
.
Stewart
, eds.,
Nova Science Publishers
,
Hauppauge, NY
, pp.
113
126
.
25.
Innocenti
,
B.
,
Bilgen
,
O. F.
,
Labey
,
L.
,
van Lenthe
,
G. H.
,
Vender Sloten
,
J.
, and
Catani
,
F.
,
2014
, “
Load Sharing and Ligament Strains in Balanced, Overstuffed and Understuffed UKA. A Validated Finite Element Analysis
,”
J. Arthroplasty
,
29
(
7
), pp.
1491
1498
.
26.
Innocenti
,
B.
,
Bellemans
,
J.
, and
Catani
,
F.
,
2015
, “
Deviations From Optimal Alignment in TKA: Is There a Biomechanical Difference Between Femoral or Tibial Component Alignment?
,”
J. Arthroplasty
,
31
(
1
), pp.
295
301
.
27.
Soenen
,
M.
,
Baracchi
,
M.
,
De Corte
,
R.
,
Labey
,
L.
, and
Innocenti
,
B.
,
2013
, “
Stemmed TKA in a Femur With a Total Hip Arthroplasty. Is There a Safe Distance Between the Stem Tips?
,”
J. Arthroplasty
,
28
(
8
), p.
1437
.
28.
Victor
,
J.
,
Van Doninck
,
D.
,
Labey
,
L.
,
Innocenti
,
B.
,
Parizel
,
P. M.
, and
Bellemans
,
J.
,
2009
, “
How Precise Can Bony Landmarks Be Determined on a CT Scan of the Knee?
,”
Knee
,
16
(
5
), p.
358
.
29.
Innocenti
,
B.
,
Pianigiani
,
S.
,
Labey
,
L.
,
Victor
,
J.
, and
Bellemans
,
J.
,
2011
, “
Contact Forces in Several TKA Designs During Squatting: A Numerical Sensitivity Analysis
,”
J. Biomech.
,
44
(
8
), pp.
1573
1581
.
30.
Pianigiani
,
S.
,
Chevalier
,
Y.
,
Labey
,
L.
,
Pascale
,
V.
, and
Innocenti
,
B.
,
2012
, “
Tibio-Femoral Kinematics in Different Total Knee Arthroplasty Designs During a Loaded Squat: A Numerical Sensitivity Study
,”
J. Biomech.
,
45
(
13
), pp.
2315
2323
.
31.
Pianigiani
,
S.
,
Labey
,
L.
,
Pascale
,
W.
, and
Innocenti
,
B.
,
2016
, “
Knee Kinetics and Kinematics: What Are the Effects of TKA Malconfigurations?
,”
Knee Surg., Sports Traumatol., Arthrosc.
,
24
(
8
), pp.
2415
2421
.
32.
Innocenti
,
B.
,
Robledo
,
H.
,
Bernabé
,
R.
, and
Pianigiani
,
S.
,
2015
, “
Investigation on the Effects Induced by TKA Features on Tibio-Femoral Mechanics. Part I: Femoral Component Designs
,”
J. Mech. Med. Biol.
,
15
(
2
), p.
1540034
.
33.
Paratte
,
S.
,
Pagnano
,
M. W.
,
Trousdale
,
R. T.
,
Berry, D. J.
,
2010
, “
Effect of Postoperative Mechanical Axis Alignment on the Fifteen-Year Survival of Modern, Cemented Total Knee Replacements
,”
J. Bone Jt. Surg. Am.
,
15
(
12
), p.
2143
.
34.
Ingrassia
,
T.
,
Nalbone
,
L.
,
Nigrelli
,
V.
,
Tumino, V.
, and
Ricotta, V.
,
2013
, “
Finite Element Analysis of Two Total Knee Prostheses
,”
Int. J. Interact. Des. Manuf.
,
7
(
2
), p.
91
.
35.
Sarathi Kopparti
,
P.
, and
Lewis
,
G.
,
2007
, “
Influence of Three Variables on the Stresses in a Three-dimensional Model of a Proximal Tibia-Total Knee Implant Construct
,”
Biomed. Mater. Eng.
,
17
, p.
19
.
36.
Innocenti
,
B.
,
Pianigiani
,
S.
,
Ramundo
,
G.
, and
Thienpont
,
E.
,
2017
, “
Biomechanical Effects of Different Varus and Valgus Alignments in Medial Unicompartmental Knee Arthroplasty
,”
J. Arthroplasty
,
31
(
12
), pp.
2685
2691
.
37.
Brihault
,
J.
,
Navacchia
,
A.
,
Pianigiani
,
S.
,
Labey
,
L.
,
De Corte
,
R.
,
Pascale
,
V.
, and
Innocenti
,
B.
,
2016
, “
All-Polyethylene Tibial Components Generate Higher Stress and Micromotions Than Metal-Backed Tibial Components in Total Knee Arthroplasty
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
24
(
8
), pp.
2550
2559
.
38.
Kayabasi
,
O.
, and
Ekici
,
B.
,
2007
, “
The Effects of Static, Dynamic and Fatigue Behavior on Three-dimensional Shape Optimization of Hip Prosthesis by Finite Element Method
,”
Mater. Des.
,
28
(
8
), p.
2269
.
39.
Innocenti
,
B.
,
Truyens
,
E.
,
Labey
,
L.
,
Wong
,
P.
,
Victor
,
J.
, and
Bellemans
,
J.
,
2009
, “
Can Medio-Lateral Baseplate Position and Load Sharing Induce Asymptomatic Local Bone Resorption on the Proximal Tibia? A Finite Element Study
,”
J. Orthop. Surg. Res.
,
4
(
1
), p.
26
.
40.
Catani
,
F.
,
Innocenti
,
B.
,
Belvedere
,
C.
,
Labey
,
L.
,
Ensini
,
A.
, and
Leardini
,
A.
,
2010
, “
The Mark Coventry Award: Articular Contact Estimation in TKA Using In Vivo Kinematics and Finite Element Analysis
,”
Clin. Orthop. Relat. Res.
,
468
(
4
), p.
19
.
41.
Arnout
,
N.
,
Vanlommel
,
L.
,
Vanlommel
,
J.
,
Luyckx
,
J. P.
,
Labey
,
L.
,
Innocenti
,
B.
,
Victor
,
J.
, and
Bellemans
,
J.
,
2015
, “
Post-Cam Mechanics and Tibiofemoral Kinematics: A Dynamic In Vitro Analysis of Eight Posterior-Stabilized Total Knee Designs
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
23
(
11
), p.
3343
.
42.
Vaninbroukx
,
M.
,
Labey
,
L.
,
Innocenti
,
B.
, and
Bellemans, J.
,
2009
, “
Cementing the Femoral Component in Total Arthroplasty: Which Technique Is the Best?
,”
Knee
,
16
(
4
), p.
265
.
43.
Vanlommel
,
J.
,
Luyckx
,
J. P.
,
Labey
,
L.
,
Innocenti
,
B.
,
De Corte
,
R.
, and
Bellemans
,
J.
,
2001
, “
Cementing the Tibial Component in Total Knee Arthroplasty: Which Technique Is the Best?
,”
J. Arthroplasty
,
26
(
3
), p.
492
.
44.
Waanders
,
D.
,
Janssen
,
D.
,
Mann
,
A. K.
,
2010
, “
The Mechanical Effects of Different Levels of Cement Penetration at the Cement–Bone Interface
,”
J. Biomech.
,
43
(
6
), p.
1167
.
45.
Medlin
,
D. J.
,
Charlebois
,
S.
,
Swarts
,
D.
,
Shetty
,
R.
, and
Poggie
,
R. A.
, “
Metallurgical Characterization of a Porous Tantalum Biomaterial (Trabecular MetalTM) for Orthopaedic Implant Applications
,”
Medical Device Materials: Materials & Processes for Medical Devices Conference
, pp.
394
398
.
46.
Rawlinson
,
J. J.
,
Wright
,
T. M.
, and
Bartel
,
D. L.
,
2005
, “
FEA of a Porous Tantalum Monoblock Tibia Compared With a Metal-Backed Tibial Component
,” 51st Annual Meeting of the Orthopaedic Research Society, Washington, DC, Paper No:
0165
.https://www.ors.org/Transactions/51/0165.pdf
47.
El-Zayat
,
B. F.
,
Heyse
,
T. J.
,
Fanciullacci
,
N.
,
Labey
,
L.
,
Fuchs-Winkelmann
,
S.
, and
Innocenti
,
B.
,
2016
, “
Fixation Techniques and Stem Dimensions in Hinged Total Knee Arthroplasty: A Finite Element Study
,”
Arch. Orthop. Traum. Surg.
,
136
(
12
), pp.
1741
1752
.
48.
Heinlein
,
B.
,
Kutzner
,
I.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
M. A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2009
, “
Direct Comparison of Measured and Calculated Total Knee Replacement Force Envelopes During Walking in the Presence of Normal and Abnormal Gait Patterns
,”
J. Biomech.
,
45
(6), pp. 990–996.
49.
Completo
,
A.
,
Duarte
,
R.
,
Fonseca
,
F.
,
Simões
,
J. A.
,
Ramos
,
A.
, and
Relvas
,
C.
,
2013
, “
Biomechanical Evaluation of Different Reconstructive Techniques of Proximal Tibia in Revision Total Knee Arthroplasty: An in-Vitro and Finite Element Analysis
,”
Clin. Biomech.
,
28
(
3
), pp.
291
298
.
50.
Patel
,
J. V.
,
Masonis
,
J. L.
,
Guerin
,
J.
,
Bourne
,
R. B.
, and
Rorabeck
,
C. H.
,
2004
, “
The Fate of Augments to Treat Type-2 Bone Defects in Revision Knee Arthroplasty
,”
J. Bone Jt. Surg. Br.
,
86
(
2
), pp.
195
199
.
51.
Galbusera
,
F.
,
Freutel
,
M.
,
Dürselen
,
L.
,
D'™Aiuto
,
M.
,
Croce
,
D.
,
Villa
,
T.
,
Sansone
,
V.
, and
Innocenti
,
B.
,
2014
, “
Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review
,”
Front Bioeng. Biotechnol.
,
2
, p.
54
.
52.
Delport
,
H.
,
Labey
,
L.
,
De Corte
,
R.
,
Innocenti
,
B.
,
Vander Sloten
,
J.
, and
Bellemans
,
J.
,
2013
, “
Collateral Ligament Strains During Knee Joint Laxity Evaluation Before and After TKA
,”
Clin. Biomech.
,
28
(
7
), pp.
777
782
.
53.
Delport
,
H.
,
Labey
,
L.
,
Innocenti
,
B.
,
De Corte
,
R.
,
Vander Sloten
,
J.
, and
Bellemans
,
J.
,
2015
, “
Restoration of Constitutional Alignment in TKA Leads to More Physiological Strains in the Collateral Ligaments
,”
KSSTA J.
,
23
(
8
), pp.
2159
2169
.
54.
Rand
,
J. A.
,
1991
, “
Bone Deficiency in Total Knee Arthroplasty: Use of Metal Wedge Augmentation
,”
Clin. Orthop.
,
271
, p.
63
.
55.
Mason
,
J. B.
, and
Scott
,
R. D.
,
1999
, “
Management of Severe Bone Loss. Prosthetic Modularity and Custom Implants
,”
Revision Total Knee Arthroplasty
,
P. A.
Lotke
, and
J. P.
Garino
, eds.,
Lippincott-Raven
,
Philadelphia, PA
, p.
207
.
56.
Fehring
,
T. K.
,
Peindl
,
R. D.
,
Humble
,
R. S.
,
Harrow
,
M. E.
, and
Frick
,
S. L.
,
1996
, “
Modular Tibial Augmentations in Total Knee Arthroplasty
,”
Clin. Orthop.
,
327
, p.
207
.
57.
Brand
,
M. G.
,
Daley
,
R. J.
,
Ewald
,
F. C.
, and
Scott
,
R. D.
,
1989
, “
Tibial Tray Augmentation With Modular Metal Wedges for Tibial Bone Stock Deficiency
,”
Clin. Orthop. Relat. Res.
,
248
, pp.
71
79
.
58.
Pagnano
,
M. W.
,
Trousdale
,
R. T.
, and
Rand
,
J. A.
,
1995
, “
Tibial Wedge Augmentation for Bone Deficiency in Total Knee Arthroplasty: A Follow-up Study
,”
Clin. Orthop. Relat. Res.
,
321
, pp.
151
155
.
59.
Tsukada
,
S.
,
Wakui
,
M.
, and
Matsueda
,
M.
,
2013
, “
Metal Block Augmentation for Bone Defects of the Medial Tibia During Primary Total Knee Arthroplasty
,”
J. Orthop. Surg. Res.
,
8
(
1
), p.
36
.
You do not currently have access to this content.