Metastatic lesions of the vertebra are associated with risk of fracture, which can be disabling and life-threatening. In the literature, attempts are found to identify the parameters that reduce the strength of a metastatic vertebra leading to spine instability. However, a number of controversial issues remain. Our aim was to quantify how the strain distribution in the vertebral body is affected by the presence and by the size of a simulated metastatic defect. Five cadaveric thoracic spine segments were subjected to non-destructive presso-flexion while intact, and after simulation of metastases of increasing size. For the largest defect, the specimens were eventually tested to failure. The full-field strain distribution in the elastic range was measured with digital image correlation (DIC) on the anterior surface of the vertebral body. The mean strain in the vertebra remained similar to the intact when the defects were smaller than 30% of the vertebral volume. The mean strains became significantly larger than in the intact for larger defects. The map of strain and its statistical distribution indicated a rather uniform condition in the intact vertebra and with defects smaller than 30%. Conversely, the strain distribution became significantly different from the intact for defects larger than 30%. A strain peak appeared in the region of the simulated metastasis, where fracture initiated during the final destructive test. This is a first step in understanding how the features of metastasis influence the vertebral strain and for the construction of a mechanistic model to predicted fracture.

References

References
1.
Smith
,
B. D.
,
Smith
,
G. L.
,
Hurria
,
A.
,
Hortobagyi
,
G. N.
, and
Buchholz
,
T. A.
,
2009
, “
Future of Cancer Incidence in the United States: Burdens Upon an Aging, Changing Nation
,”
J. Clin. Oncol.
,
27
(
17
), pp.
2758
2765
.
2.
Siegel, R. L.
,
Miller, K, D.
, and
Jemal, A.
, 2017, “
Cancer Statistics
,”
CA Cancer J Clin.
,
67
(1), pp. 7–30.
3.
Mirels
,
H.
,
1989
, “
Metastatic Disease in Long Bones. A Proposed Scoring System for Diagnosing Impending Pathologic Fractures
,”
Clin. Orthop. Relat. Res.
,
249
, pp.
256
264
.
4.
Laufer
,
I.
,
Rubin
,
D. G.
,
Lis
,
E.
,
Cox
,
B. W.
,
Stubblefield
,
M. D.
,
Yamada
,
Y.
, and
Bilsky
,
M. H.
,
2013
, “
The NOMS Framework: Approach to the Treatment of Spinal Metastatic Tumors
,”
Oncologist
,
18
(
6
), pp.
744
751
.
5.
Jacobs
,
W. B.
, and
Perrin
,
R. G.
,
2001
, “
Evaluation and Treatment of Spinal Metastases: An Overview
,”
Neurosurg. Focus
,
11
(
6
), pp.
1
11
.
6.
Wong
,
D. A.
,
Fornasier
,
V. L.
, and
MacNab
,
I.
,
1990
, “
Spinal Metastases: The Obvious, the Occult, and the Impostors
,”
Spine (Phila. Pa. 1976)
,
15
(
1
), pp.
1
4
.
7.
Klimo
,
P.
, Jr.
, and
Schmidt
,
M. H.
,
2004
, “
Surgical Management of Spinal Metastases
,”
Oncologist
,
9
(
2
), pp.
188
196
.
8.
Tomita
,
K.
,
Kawahara
,
N.
,
Kobayashi
,
T.
,
Yoshida
,
A.
,
Murakami
,
H.
, and
Akamaru
,
T.
,
2001
, “
Surgical Strategy for Spinal Metastases
,”
Spine (Phila. Pa. 1976)
,
26
(
3
), pp.
298
306
.
9.
White
,
A. A.
,
Southwick
,
W.
, and
Panjabi
,
M. M.
,
1976
, “
Clinical Instability in the Lower Cervical Spine a Review of past and Current Concepts
,”
Spine (Phila. Pa. 1976)
,
1
(
1
), pp.
15
27
.
10.
Whyne
,
C. M.
,
Hu
,
S. S.
,
Workman
,
K. L.
, and
Lotz
,
J. C.
,
2000
, “
Biphasic Material Properties of Lytic Bone Metastases
,”
Ann. Biomed. Eng.
,
28
(
9
), pp.
1154
1158
.
11.
Kaneko
,
T. S.
,
Bell
,
J. S.
,
Pejcic
,
M. R.
,
Tehranzadeh
,
J.
, and
Keyak
,
J. H.
,
2004
, “
Mechanical Properties, Density and Quantitative CT Scan Data of Trabecular Bone With and Without Metastases
,”
J. Biomech.
,
37
(
4
), pp.
523
530
.
12.
Szendrői
,
M.
,
Antal
,
I.
,
Szendrői
,
A.
,
Lazáry
,
Á.
, and
Varga
,
P. P.
,
2017
, “
Diagnostic Algorithm, Prognostic Factors and Surgical Treatment of Metastatic Cancer Diseases of the Long Bones and Spine
,”
EFORT Open Rev.
,
2
(
9
), pp.
372
381
.
13.
Ibrahim
,
A.
,
Crockard
,
A.
,
Antonietti
,
P.
,
Boriani
,
S.
,
Bünger
,
C.
,
Gasbarrini
,
A.
,
Grejs
,
A.
,
Harms
,
J.
,
Kawahara
,
N.
,
Mazel
,
C.
,
Melcher
,
R.
, and
Tomita
,
K.
,
2008
, “
Does Spinal Surgery Improve the Quality of Life for Those With Extradural (Spinal) Osseous Metastases? An International Multicenter Prospective Observational Study of 223 Patients
,”
J. Neurosurg. Spine
,
8
(
3
), pp.
271
278
.
14.
Choi
,
D.
,
Crockard
,
A.
,
Bunger
,
C.
,
Harms
,
J.
,
Kawahara
,
N.
,
Mazel
,
C.
,
Melcher
,
R.
, and
Tomita
,
K.
,
2010
, “
Review of Metastatic Spine Tumour Classification and Indications for Surgery: The Consensus Statement of the Global Spine Tumour Study Group
,”
Eur. Spine J.
,
19
(
2
), pp.
215
222
.
15.
Fisher
,
C. G.
,
Dipaola
,
C. P.
,
Ryken
,
T. C.
,
Bilsky
,
M. H.
,
Shaffrey
,
C. I.
,
Berven
,
S. H.
,
Harrop
,
J. S.
,
Fehlings
,
M. G.
,
Boriani
,
S.
,
Chou
,
D.
,
Schmidt
,
M. H.
,
Polly
,
D. W.
,
Biagini
,
R.
,
Burch
,
S.
,
Dekutoski
,
M. B.
,
Ganju
,
A.
,
Gerszten
,
P. C.
,
Gokaslan
,
Z. L.
,
Groff
,
M. W.
,
Liebsch
,
N. J.
,
Mendel
,
E.
,
Okuno
,
S. H.
,
Patel
,
S.
,
Rhines
,
L. D.
,
Rose
,
P. S.
,
Sciubba
,
D. M.
,
Sundaresan
,
N.
,
Tomita
,
K.
,
Varga
,
P. P.
,
Vialle
,
L. R.
,
Vrionis
,
F. D.
,
Yamada
,
Y.
, and
Fourney
,
D. R.
,
2010
, “
A Novel Classification System for Spinal Instability in Neoplastic Disease
,”
Spine (Phila. Pa. 1976)
,
35
(
22
), pp.
1221
1229
.
16.
Fourney
,
D. R.
,
Frangou
,
E. M.
,
Ryken
,
T. C.
,
DiPaola
,
C. P.
,
Shaffrey
,
C. I.
,
Berven
,
S. H.
,
Bilsky
,
M. H.
,
Harrop
,
J. S.
,
Fehlings
,
M. G.
,
Boriani
,
S.
,
Chou
,
D.
,
Schmidt
,
M. H.
,
Polly
,
D. W.
,
Biagini
,
R.
,
Burch
,
S.
,
Dekutoski
,
M. B.
,
Ganju
,
A.
,
Gerszten
,
P. C.
,
Gokaslan
,
Z. L.
,
Groff
,
M. W.
,
Liebsch
,
N. J.
,
Mendel
,
E.
,
Okuno
,
S. H.
,
Patel
,
S.
,
Rhines
,
L. D.
,
Rose
,
P. S.
,
Sciubba
,
D. M.
,
Sundaresan
,
N.
,
Tomita
,
K.
,
Varga
,
P. P.
,
Vialle
,
L. R.
,
Vrionis
,
F. D.
,
Yamada
,
Y.
, and
Fisher
,
C. G.
,
2011
, “
Spinal Instability Neoplastic Score: An Analysis of Reliability and Validity From the Spine Oncology Study Group
,”
J. Clin. Oncol.
,
29
(
22
), pp.
3072
3077
.
17.
Benca
,
E.
,
Patsch
,
J. M.
,
Mayr
,
W.
,
Pahr
,
D. H.
, and
Windhager
,
R.
,
2016
, “
The Insufficiencies of Risk Analysis of Impending Pathological Fractures in Patients With Femoral Metastases: A Literature Review
,”
Bone Rep.
,
5
, pp.
51
56
.
18.
Hipp
,
J. A.
,
Mcbroom
,
R. J.
,
Cheal
,
E. J.
, and
Hayes
,
W. C.
,
1989
, “
Structural Consequences of Endosteal Metastatic Lesions in Long Bones
,”
J. Orthop. Res.
,
7
(
6
), pp.
828
837
.
19.
Hipp
,
J. A.
,
Edgerton
,
B. C.
,
An
,
K. N.
, and
Hayes
,
W. C.
,
1990
, “
Structural Consequences of Transcortical Holes in Long Bones Loaded in Torsion
,”
J. Biomech.
,
23
(
12
), pp.
1261
1268
.
20.
Fidler
,
M.
,
1981
, “
Incidence of Fracture Through Metastases in Long Bones
,”
Acta Orthop.
,
52
(
6
), pp.
623
627
.
21.
Menck
,
H.
,
Schulze
,
S.
, and
Larsen
,
E.
,
1988
, “
Metastasis Size in Pathologic Femoral Fractures
,”
Acta Orthop.
,
59
(
2
), pp.
151
154
.
22.
Van der Linden
,
Y. M.
,
Dijkstra
,
P. D.
,
Kroon
,
H. M.
,
Lok
,
J. J.
,
Noordijk
,
E. M.
,
Leer
,
J. W.
, and
Marijnen
,
C. A.
,
2004
, “
Comparative Analysis of Risk Factors for Pathological Fracture With Femoral Metastases
,”
J. Bone Jt. Surg. Br.
,
86
(
4
), pp.
566
573
.
23.
Whyne
,
C. M.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
,
2001
, “
Parametric Finite Element Analysis of Vertebral Bodies Affected by Tumors
,”
J. Biomech.
,
34
(
10
), pp.
1317
1324
.
24.
Whyne
,
C. M.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
,
2003
, “
Burst Fracture in the Metastatically Involved Spine: Development, Validation, and Parametric Analysis of a Three-Dimensional Poroelastic Finite-Element Model
,”
Spine (Phila. Pa. 1976)
,
28
(
7
), pp.
652
660
.
25.
Tschirhart
,
C. E.
,
Nagpurkar
,
A.
, and
Whyne
,
C. M.
,
2004
, “
Effects of Tumor Location, Shape and Surface Serration on Burst Fracture Risk in the Metastatic Spine
,”
J. Biomech.
,
37
(
5
), pp.
653
660
.
26.
Tschirhart
,
C. E.
,
Finkelstein
,
J. A.
, and
Whyne
,
C. M.
,
2007
, “
Biomechanics of Vertebral Level, Geometry, and Transcortical Tumors in the Metastatic Spine
,”
J. Biomech.
,
40
(
1
), pp.
46
54
.
27.
Snyder
,
B. D.
,
Cordio
,
M. A.
,
Nazarian
,
A.
,
Kwak
,
S. D.
,
Chang
,
D. J.
,
Entezari
,
V.
,
Zurakowski
,
D.
, and
Parker
,
L. M.
,
2009
, “
Noninvasive Prediction of Fracture Risk in Patients With Metastatic Cancer to the Spine
,”
Clin. Cancer Res.
,
15
(
24
), pp.
7676
7683
.
28.
Alkalay
,
R. N.
, and
Harrigan
,
T. P.
,
2016
, “
Mechanical Assessment of the Effects of Metastatic Lytic Defect on the Structural Response of Human Thoracolumbar Spine
,”
J. Orthop. Res.
,
34
(
10
), pp.
1808
1819
.
29.
Alkalay
,
R. N.
,
2015
, “
Effect of the Metastatic Defect on the Structural Response and Failure Process of Human Vertebrae: An Experimental Study
,”
Clin. Biomech.
,
30
(
2
), pp.
121
128
.
30.
Silva
,
M. J.
,
Hipp
,
J. A.
,
Gowan
,
D. P. M.
,
Hayes
,
W. C.
,
McGowan
,
D. P.
,
Takeuchi
,
T.
, and
Hayes
,
W. C.
,
1993
, “
Strength Reductions of Thoracic Vertebrae in the Presence of Transcortical Osseous Defects: Effects of Defect Location, Pedicle Disruption, and Defect Size
,”
Eur. Spine J.
,
2
(
3
), pp.
118
125
.
31.
Windhagen
,
H. J.
,
Hipp
,
J. A.
,
Silva
,
M. J.
,
Lipson
,
S. J.
, and
Hayes
,
W. C.
,
1997
, “
Predicting Failure of Thoracic Vertebrae With Simulated and Actual MEtastatic Defects
,”
Clin. Orthop. Relat. Res.
,
344
, pp.
313
319
.
32.
Palanca
,
M.
,
Marco
,
M.
,
Ruspi
,
M. L.
, and
Cristofolini
,
L.
,
2018
, “
Full-Field Strain Distribution in Multi-Vertebra Spine Segments: An In-Vitro Application of DIC
,”
Med. Eng. Phys.
,
52
, pp.
76
83
.
33.
Danesi
,
V.
,
Zani
,
L.
,
Scheele
,
A.
,
Berra
,
F.
, and
Cristofolini
,
L.
,
2014
, “
Reproducible Reference Frame for In Vivo Testing of the Human Vertebrae
,”
J. Biomech.
,
47
(
1
), pp.
313
318
.
34.
Lionello
,
G.
,
Sirieix
,
C.
, and
Baleani
,
M.
,
2014
, “
An Effective Procedure to Create a Speckle Pattern on Biological Soft Tissue for Digital Image Correlation Measurements
,”
J. Mech. Behav. Biomed. Mater.
,
39
, pp.
1
8
.
35.
Palanca
,
M.
,
Tozzi
,
G.
, and
Cristofolini
,
L.
,
2016
, “
The Use of Digital Image Correlation in the Biomechanical Area: A Review
,”
Int. Biomech.
,
3
(
1
), pp.
1
21
.
36.
Lionello
,
G.
, and
Cristofolini
,
L.
,
2014
, “
A Practical Approach to Optimizing the Preparation of Speckle Patterns for Digital-Image Correlation
,”
Meas. Sci. Technol.
,
25
(
10
), p.
107001
.
37.
Taneichi
,
H.
,
Kaneda
,
K.
,
Takeda
,
N.
,
Abumi
,
K.
, and
Satoh
,
S.
,
1997
, “
Risk Factors and Probability of Vertebral Body Collapse in Metastases of the Thoracic and Lumbar Spine
,”
Spine (Phila. Pa. 1976)
,
22
(
3
), pp.
239
245
.
38.
Sutton
,
M. A.
,
Orteu
,
J. J.
, and
Schreier
,
H. W.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements
,
Springer
, New York.
39.
Palanca
,
M.
,
Brugo
,
T. M. M.
, and
Cristofolini
,
L.
,
2015
, “
Use of Digital Image Correlation to Understand the Biomechanics of the Vertebra
,”
J. Mech. Med. Biol.
,
15
(
02
), p.
1540004
.
40.
Cristofolini
,
L.
,
Brandolini
,
N.
,
Danesi
,
V.
,
Juszczyk
,
M. M.
,
Erani
,
P.
, and
Viceconti
,
M.
,
2013
, “
Strain Distribution in the Lumbar Vertebrae Under Different Loading Configurations
,”
Spine J.
,
13
(
10
), pp.
1281
1292
.
41.
Panjabi
,
M. M.
,
2007
, “
Hybrid Multidirectional Test Method to Evaluate Spinal Adjacent-Level Effects
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
3
), pp.
257
265
.
42.
Dall'Ara
,
E.
,
Schmidt
,
R.
,
Pahr
,
D.
,
Varga
,
P.
,
Chevalier
,
Y.
,
Patsch
,
J.
,
Kainberger
,
F.
, and
Zysset
,
P.
,
2010
, “
A Nonlinear Finite Element Model Validation Study Based on a Novel Experimental Technique for Inducing Anterior Wedge-Shape Fractures in Human Vertebral Bodies In Vivo
,”
J. Biomech.
,
43
(
12
), pp.
2374
2380
.
43.
Wilke
,
H.-J.
,
Wenger
,
K.
, and
Claes
,
L.
,
1998
, “
Testing Criteria for Spinal Implants: Recommentations for the Standardardization of In Vivo Stability Testing of Spinal Implants
,”
Eur. Spine J.
,
7
(
2
), pp.
148
154
.
44.
Cristofolini
,
L.
,
Conti
,
G.
,
Juszczyk
,
M.
,
Cremonini
,
S.
,
Van Sint Jan
,
S.
, and
Viceconti
,
M.
,
2010
, “
Structural Behaviour and Strain Distribution of the Long Bones of the Human Lower Limbs
,”
J. Biomech.
,
43
(
5
), pp.
826
835
.
45.
Aamodt
,
A.
,
Lund-Larsen
,
J.
,
Eine
,
J.
,
Andersen
,
E.
,
Benum
,
P.
, and
Husby
,
O. S.
,
1997
, “
In Vivo Measuments Show Tensile Axial Strain in the Proximal Lateral Aspect of the Human Femur
,”
J. Orthop. Res.
,
15
(
6
), pp.
927
931
.
46.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
.
47.
Cristofolini
,
L.
,
2015
, “
In Vitro Evidence of the Structural Optimization of the Human Skeletal Bones
,”
J. Biomech.
,
48
(
5
), pp.
787
796
.
48.
Danesi
,
V.
,
Erani
,
P.
,
Brandolini
,
N.
,
Juszczyk
,
M.
, and
Cristofolini
,
L.
,
2016
, “
Effect of the In Vivo Boundary Conditions on the Surface Strain Experienced by the Vertebral Body in the Elastic Regime
,”
ASME J. Biomech. Eng.
,
138
(
10
), p.
104503
.
49.
Benca
,
E.
,
Reisinger
,
A.
,
Patsch
,
J. M.
,
Hirtler
,
L.
,
Synek
,
A.
,
Stenicka
,
S.
,
Windhager
,
R.
,
Mayr
,
W.
, and
Pahr
,
D. H.
,
2017
, “
Effect of Simulated Metastatic Lesions on the Biomechanical Behavior of the Proximal Femur
,”
J. Orthop. Res.
,
35
(
11
), pp.
2407
2414
.
50.
Burke
,
M.
,
Atkins
,
A.
,
Kiss
,
A.
,
Akens
,
M.
,
Yee
,
A.
, and
Whyne
,
C.
,
2017
, “
The Impact of Metastasis on the Mineral Phase of Vertebral Bone Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
69
, pp.
75
84
.
51.
Nazarian
,
A.
,
Von Stechow
,
D.
,
Zurakowski
,
D.
,
Müller
,
R.
, and
Snyder
,
B. D.
,
2008
, “
Bone Volume Fraction Explains the Variation in Strength and Stiffness of Cancellous Bone Affected by Metastatic Cancer and Osteoporosis
,”
Calcif. Tissue Int.
,
83
(
6
), pp.
368
379
.
52.
Palanca
,
M.
,
Cristofolini
,
L.
,
Dall'Ara
,
E.
,
Curto
,
M.
,
Innocente
,
F.
,
Danesi
,
V.
, and
Tozzi
,
G.
,
2016
, “
Digital Volume Correlation Can Be Used to Estimate Local Strains in Natural and Augmented Vertebrae: An Organ-Level Study
,”
J. Biomech.
,
49
(
16
), pp.
3882
3890
.
53.
Tozzi
,
G.
,
Danesi
,
V.
,
Palanca
,
M.
, and
Cristofolini
,
L.
,
2016
, “
Elastic Full-Field Strain Analysis and Microdamage Progression in the Vertebral Body From Digital Volume Correlation
,”
Strain
,
52
(
5
), pp.
446
455
.
54.
Costa
,
M. C.
,
Tozzi
,
G.
,
Cristofolini
,
L.
,
Danesi
,
V.
,
Viceconti
,
M.
, and
Dall'Ara
,
E.
,
2017
, “
Micro Finite Element Models of the Vertebral Body: Validation of Local Displacement Predictions
,”
PLoS One
,
12
(
7
), p.
e0180151
.
You do not currently have access to this content.