At present, the current gold-standard for osteoporosis diagnosis is based on bone mineral density (BMD) measurement, which, however, has been demonstrated to poorly estimate fracture risk. Further parameters in the hands of the clinicians are represented by the hip structural analysis (HSA) variables, which include geometric information of the proximal femur cross section. The purpose of this study was to investigate the suitability of HSA parameters as additional hip fracture risk predictors. With this aim, twenty-eight three-dimensional patient-specific models of the proximal femur were built from computed tomography (CT) images and a sideways fall condition was reproduced by finite element (FE) analyses. A tensile or compressive predominance based on minimum and maximum principal strains was determined at each volume element and a risk factor (RF) was calculated. The power of HSA variables combinations to predict the maximum superficial RF values was assessed by multivariate linear regression analysis. The optimal regression model, identified through the Akaike information criterion (AIC), only comprises two variables: the buckling ratio (BR) and the neck-shaft angle (NSA). In order to validate the study, the model was tested on two additional patients who suffered a hip fracture after a fall. The results classified the patients in the high risk level, confirming the prediction power of the adopted model.

References

References
1.
Johnell
,
O.
,
Kanis
,
J. A.
,
Oden
,
A.
,
Sernbo
,
I.
,
Redlund-Johnell
,
I.
,
Petterson
,
C.
,
De Laet
,
C.
, and
Jönsson
,
B.
,
2004
, “
Mortality After Osteoporotic Fractures
,”
Osteoporosis Int.
,
15
(
1
), pp.
38
42
.
2.
Hallberg
,
I.
,
Rosenqvist
,
A. M.
,
Kartous
,
L.
,
Löfman
,
O.
,
Wahlström
,
O.
, and
Toss
,
G.
,
2004
, “
Health-Related Quality of Life After Osteoporotic Fractures
,”
Osteoporosis Int.
,
15
(
10
), pp.
834
841
.
3.
Gullberg
,
B.
,
Johnell
,
O.
, and
Kanis
,
J. A.
,
1997
, “
World-Wide Projections for Hip Fracture
,”
Osteoporosis Int.
,
7
(
5
), pp.
407
413
.
4.
Haentjens
,
P.
,
Autier
,
P.
,
Barette
,
M.
,
Boonen
,
S.
, and
Belgian Hip Fracture
,
S. G.
,
2001
, “
The Economic Cost of Hip Fractures Among Elderly Women: A One-Year, Prospective, Observational Cohort Study With Matched-Pair Analysis
,”
JBJS
,
83
(
4
), pp.
493
500
.
5.
Center
,
J. R.
,
Nguyen
,
T. V.
,
Schneider
,
D.
,
Sambrook
,
P. N.
, and
Eisman
,
J. A.
,
1999
, “
Mortality After All Major Types of Osteoporotic Fracture in Men and Women: An Observational Study
,”
Lancet
,
353
(
9156
), pp.
878
882
.
6.
Cumming
,
R. G.
, and
Klineberg
,
R. J.
,
1994
, “
Fall Frequency and Characteristics and the Risk of Hip Fractures
,”
J. Am. Geriatrics Soc.
,
42
(
7
), pp.
774
778
.
7.
Järvinen
,
T. L.
,
Sievänen
,
H.
,
Khan
,
K. M.
,
Heinonen
,
A.
, and
Kannus
,
P.
,
2008
, “
Shifting the Focus in Fracture Prevention From Osteoporosis to Falls
,”
BMJ
,
336
(
7636
), p.
124
.
8.
Khoo
,
B. C. C.
,
Lewis
,
J. R.
,
Brown
,
K.
, and
Prince
,
R. L.
,
2016
, “
Evaluation of a Simplified Hip Structure Analysis Method for the Prediction of Incident Hip Fracture Events
,”
Osteoporosis Int.
,
27
(
1
), pp.
241
248
.
9.
MacNeil
,
J. A. M.
,
Adachi
,
J. D.
,
Goltzman
,
D.
,
Josse
,
R. G.
,
Kovacs
,
C. S.
,
Prior
,
J. C.
,
Olszynski
,
W.
,
Davison
,
K. S.
, and
Kaiser
,
S. M.
,
2012
, “
Predicting Fracture Using 2D Finite Element Modelling
,”
Med. Eng. Phys.
,
34
(
4
), pp.
478
484
.
10.
Bouxsein
,
M. L.
,
2006
, “
Biomechanics of Osteoporotic Fractures
,”
Clinical Rev. Bone Miner. Metab.
,
4
(
3
), pp.
143
153
.
11.
Leslie
,
W. D.
, and
Lix
,
L. M.
,
2014
, “
Comparison Between Various Fracture Risk Assessment Tools
,”
Osteoporosis Int.
,
25
(
1
), pp.
1
21
.
12.
Gregory
,
J. S.
, and
Aspden
,
R. M.
,
2008
, “
Femoral Geometry as a Risk Factor for Osteoporotic Hip Fracture in Men and Women
,”
Med. Eng. Phys.
,
30
(
10
), pp.
1275
1286
.
13.
Gnudi
,
S.
,
Sitta
,
E.
, and
Pignotti
,
E.
,
2012
, “
Prediction of Incident Hip Fracture by Femoral Neck Bone Mineral Density and Neck–Shaft Angle: A 5-Year Longitudinal Study in Post-Menopausal Females
,”
Br. J. Radiol.
,
85
(
1016
), pp.
e467
e473
.
14.
Lin
,
Z. L.
,
Li
,
P. F.
,
Pang
,
Z. H.
,
Zheng
,
X. H.
,
Huang
,
F.
,
Xu
,
H. H.
, and
Li
,
Q. L.
,
2015
, “
Influence of Regional Difference in Bone Mineral Density on Hip Fracture Site in Elderly Females by Finite Element Analysis
,”
Cell Biochem. Biophys.
,
73
(
2
), pp.
405
412
.
15.
Sarvi
,
M. N.
, and
Luo
,
Y.
,
2015
, “
A Two-Level Subject-Specific Biomechanical Model for Improving Prediction of Hip Fracture Risk
,”
Clin. Biomech.
,
30
(
8
), pp.
881
887
.
16.
Nasiri
,
M.
, and
Luo
,
Y.
,
2016
, “
Study of Sex Differences in the Association Between Hip Fracture Risk and Body Parameters by DXA-Based Biomechanical Modelling
,”
Bone
,
90
, pp.
90
98
.
17.
D'Amelio
,
P.
,
Rossi
,
P.
,
Isaia
,
G.
,
Lollino
,
N.
,
Castoldi
,
F.
,
Girardo
,
M.
,
Dettoni
,
F.
,
Sattin
,
F.
,
Delise
,
M.
, and
Bignardi
,
C.
,
2008
, “
Bone Mineral Density and Singh Index Predict Bone Mechanical Properties of Human Femur
,”
Connect. Tissue Res.
,
49
(
2
), pp.
99
104
.
18.
Grassi
,
L.
,
Schileo
,
E.
,
Taddei
,
F.
,
Zani
,
L.
,
Juszczyk
,
M.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2012
, “
Accuracy of Finite Element Predictions in Sideways Load Configurations for the Proximal Human Femur
,”
J. Biomech.
,
45
(
2
), pp.
394
399
.
19.
Koivumäki
,
J. E.
,
Thevenot
,
J.
,
Pulkkinen
,
P.
,
Kuhn
,
V.
,
Link
,
T. M.
,
Eckstein
,
F.
, and
Jämsä
,
T.
,
2012
, “
CT-Based Finite Element Models Can Be Used to Estimate Experimentally Measured Failure Loads in the Proximal Femur
,”
Bone
,
50
(
4
), pp.
824
829
.
20.
Nishiyama
,
K. K.
,
Gilchrist
,
S.
,
Guy
,
P.
,
Cripton
,
P.
, and
Boyd
,
S. K.
,
2013
, “
Proximal Femur Bone Strength Estimated by a Computationally Fast Finite Element Analysis in a Sideways Fall Configuration
,”
J. Biomech.
,
46
(
7
), pp.
1231
1236
.
21.
Schileo
,
E.
,
Balistreri
,
L.
,
Grassi
,
L.
,
Cristofolini
,
L.
, and
Taddei
,
F.
,
2014
, “
To What Extent Can Linear Finite Element Models of Human Femora Predict Failure Under Stance and Fall Loading Configurations?
,”
J. Biomech.
,
47
(
14
), pp.
3531
3538
.
22.
Dragomir-Daescu
,
D.
,
Den Buijs
,
J. O.
,
McEligot
,
S.
,
Dai
,
Y.
,
Entwistle
,
R. C.
,
Salas
,
C.
,
Melton
,
L. J.
,
Bennet
,
K. E.
,
Khosla
,
S.
, and
Amin
,
S.
,
2011
, “
Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture Load During a Sideways Fall on the Hip
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
742
755
.
23.
Zanetti
,
E. M.
, and
Bignardi
,
C.
,
2009
, “
Structural Analysis of Skeletal Body Elements: Numerical and Experimental Methods
,”
Biomechanical Systems Technology
(Muscular Skeletal Systems, Vol. 3), Los Angels, CA.
24.
Nishiyama
,
K. K.
,
Ito
,
M.
,
Harada
,
A.
, and
Boyd
,
S. K.
,
2014
, “
Classification of Women With and Without Hip Fracture Based on Quantitative Computed Tomography and Finite Element Analysis
,”
Osteoporosis Int.
,
25
(
2
), pp.
619
626
.
25.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus–Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.
26.
Schileo
,
E.
,
Taddei
,
F.
,
Malandrino
,
A.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2007
, “
Subject-Specific Finite Element Models Can Accurately Predict Strain Levels in Long Bones
,”
J. Biomech.
,
40
(
13
), pp.
2982
2989
.
27.
Rho
,
J. Y.
,
Hobatho
,
M. C.
, and
Ashman
,
R. B.
,
1995
, “
Relations of Mechanical Properties to Density and CT Numbers in Human Bone
,”
Med. Eng. Phys.
,
17
(
5
), pp.
347
355
.
28.
Robinovitch
,
S. N.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1991
, “
Prediction of Femoral Impact Forces in Falls on the Hip
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
366
374
.
29.
Robinovitch
,
S. N.
,
McMahon
,
T. A.
, and
Hayes
,
W. C.
,
1995
, “
Force Attenuation in Trochanteric Soft Tissues During Impact From a Fall
,”
J. Orthop. Res.
,
13
(
6
), pp.
956
962
.
30.
Levine
,
I. C.
,
Bhan
,
S.
, and
Laing
,
A. C.
,
2013
, “
The Effects of Body Mass Index and Sex on Impact Force and Effective Pelvic Stiffness During Simulated Lateral Falls
,”
Clin. Biomech.
,
28
(
9–10
), pp.
1026
1033
.
31.
Van den Kroonenberg
,
A. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1995
, “
Dynamic Models for Sideways Falls From Standing Height
,”
Trans.-Am. Soc. Mech. Eng. J. Biomech. Eng.
,
117
(
3
), pp.
309
309
.
32.
Armstrong
,
C. G.
,
Bahrani
,
A. S.
, and
Gardner
,
D. L.
,
1979
, “
In Vitro Measurement of Articular Cartilage Deformations in the Intact Human Hip Joint Under Load
,”
JBJS
,
61
(
5
), pp.
744
755
.
33.
Fermor
,
H. L.
,
McLure
,
S. W. D.
,
Taylor
,
S. D.
,
Russell
,
S. L.
,
Williams
,
S.
,
Fisher
,
J.
, and
Ingham
,
E.
,
2015
, “
Biological, Biochemical and Biomechanical Characterisation of Articular Cartilage From the Porcine, Bovine and Ovine Hip and Knee
,”
Bio-Med. Mater. Eng.
,
25
(
4
), pp.
381
395
.
34.
Schileo
,
E.
,
Taddei
,
F.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2008
, “
Subject-Specific Finite Element Models Implementing a Maximum Principal Strain Criterion Are Able to Estimate Failure Risk and Fracture Location on Human Femurs Tested In Vitro
,”
J. Biomech.
,
41
(
2
), pp.
356
367
.
35.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
.
36.
Beck
,
T. J.
,
Ruff
,
C. B.
,
Warden
,
K. E.
,
Scott
,
J. W.
, and
Rao
,
G. U.
,
1990
, “
Predicting Femoral Neck Strength From Bone Mineral Data: A Structural Approach
,”
Invest. Radiol.
,
25
(
1
), pp.
6
18
.
37.
Kaptoge
,
S.
,
Beck
,
T. J.
,
Reeve
,
J.
,
Stone
,
K. L.
,
Hillier
,
T. A.
,
Cauley
,
J. A.
, and
Cummings
,
S. R.
,
2008
, “
Prediction of Incident Hip Fracture Risk by Femur Geometry Variables Measured by Hip Structural Analysis in the Study of Osteoporotic Fractures
,”
J. Bone Miner. Res.
,
23
(
12
), pp.
1892
1904
.
38.
Akaike
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
IEEE Trans. Autom. Control
,
19
(
6
), pp.
716
723
.
39.
Gallo
,
D.
,
Steinman
,
D. A.
,
Bijari
,
P. B.
, and
Morbiducci
,
U.
,
2012
, “
Helical Flow in Carotid Bifurcation as Surrogate Marker of Exposure to Disturbed Shear
,”
J. Biomech.
,
45
(
14
), pp.
2398
2404
.
40.
Marshall
,
D.
,
Johnell
,
O.
, and
Wedel
,
H.
,
1996
, “
Meta-Analysis of How Well Measures of Bone Mineral Density Predict Occurrence of Osteoporotic Fractures
,”
BMJ
,
312
(
7041
), pp.
1254
1259
.
41.
Schuit
,
S. C. E.
,
Van der Klift
,
M.
,
Weel
,
A. E. A. M.
,
De Laet
,
C. E. D. H.
,
Burger
,
H.
,
Seeman
,
E.
,
Hofman
,
A.
,
Uitterlinden
,
A. G.
,
Van Leeuwen
,
J. P. T. M.
, and
Pols
,
H. A. P.
,
2004
, “
Fracture Incidence and Association With Bone Mineral Density in Elderly Men and Women: The Rotterdam Study
,”
Bone
,
34
(
1
), pp.
195
202
.
42.
Kanis
,
J. A.
,
Borgstrom
,
F.
,
De Laet
,
C.
,
Johansson
,
H.
,
Johnell
,
O.
,
Jonsson
,
B.
,
Oden
,
A.
,
Zethraeus
,
N.
,
Pfleger
,
B.
, and
Khaltaev
,
N.
,
2005
, “
Assessment of Fracture Risk
,”
Osteoporosis Int.
,
16
(
6
), pp.
581
589
.
43.
Langsetmo
,
L.
,
Goltzman
,
D.
,
Kovacs
,
C. S.
,
Adachi
,
J. D.
,
Hanley
,
D. A.
,
Kreiger
,
N.
,
Josse
,
R.
,
Papaioannou
,
A.
,
Olszynski
,
W. P.
, and
Jamal
,
S. A.
,
2009
, “
Repeat Low‐Trauma Fractures Occur Frequently Among Men and Women Who Have Osteopenic BMD
,”
J. Bone Miner. Res.
,
24
(
9
), pp.
1515
1522
.
44.
Häuselmann
,
H. J.
, and
Rizzoli
,
R.
,
2003
, “
A Comprehensive Review of Treatments for Postmenopausal Osteoporosis
,”
Osteoporosis Int.
,
14
(
1
), pp.
2
12
.
45.
Watkins
,
M. P.
,
Norris
,
J. Y.
,
Grimston
,
S. K.
,
Zhang
,
X.
,
Phipps
,
R. J.
,
Ebetino
,
F. H.
, and
Civitelli
,
R.
,
2012
, “
Bisphosphonates Improve Trabecular Bone Mass and Normalize Cortical Thickness in Ovariectomized, Osteoblast connexin43 Deficient Mice
,”
Bone
,
51
(
4
), pp.
787
794
.
46.
Zanetti
,
E. M.
,
Crupi
,
V.
,
Bignardi
,
C.
, and
Calderale
,
P. M.
,
2005
, “
Radiograph-Based Femur Morphing Method
,”
Med. Biol. Eng. Comput.
,
43
(
2
), pp.
181
188
.
47.
Koivumäki
,
J. E.
,
Thevenot
,
J.
,
Pulkkinen
,
P.
,
Kuhn
,
V.
,
Link
,
T. M.
,
Eckstein
,
F.
, and
Jämsä
,
T.
,
2012
, “
Cortical Bone Finite Element Models in the Estimation of Experimentally Measured Failure Loads in the Proximal Femur
,”
Bone
,
51
(
4
), pp.
737
740
.
48.
Naylor
,
K. E.
,
McCloskey
,
E. V.
,
Eastell
,
R.
, and
Yang
,
L.
,
2013
, “
Use of DXA‐Based Finite Element Analysis of the Proximal Femur in a Longitudinal Study of Hip Fracture
,”
J. Bone Miner. Res.
,
28
(
5
), pp.
1014
1021
.
You do not currently have access to this content.