Endovascular aneurysm repair (EVAR) has disseminated rapidly as an alternative to open surgical repair for the treatment of abdominal aortic aneurysms (AAAs), because of its reduced invasiveness, low mortality, and morbidity rate. The effectiveness of the endovascular devices used in EVAR is always at question as postoperative adverse events can lead to re-intervention or to a possible fatal scenario for the circulatory system. Motivated by the assessment of the risks related to thrombus formation, here the impact of two different commercial endovascular grafts on local hemodynamics is explored through 20 image-based computational hemodynamic models of EVAR-treated patients (N = 10 per each endograft model). Hemodynamic features, susceptible to promote thrombus formation, such as flow separation and recirculation, are quantitatively assessed and compared with the local hemodynamics established in image-based infrarenal abdominal aortic models of healthy subjects (N = 10). Moreover, the durability of endovascular devices is investigated analyzing the displacement forces (DFs) acting on them. The hemodynamic analysis is complemented by a geometrical characterization of the EVAR-induced reshaping of the infrarenal abdominal aortic vascular region. The findings of this study indicate that (1) the clinically observed propensity to thrombus formation in devices used in EVAR strategies can be explained in terms of local hemodynamics by means of image-based computational hemodynamics approach; (2) reportedly prothrombotic hemodynamic structures are strongly associated with the geometry of the aortoiliac tract postoperatively; and (3) DFs are associated with cross-sectional area of the aortoiliac tract postoperatively. In perspective, our study suggests that future clinical followup studies could include a geometric analysis of the region of the implant, monitoring shape variations that can lead to hemodynamic disturbances of clinical significance.

References

References
1.
Ailawadi
,
G.
,
Eliason
,
J. L.
, and
Upchurch
,
G. R.
,
2003
, “
Current Concepts in the Pathogenesis of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
38
(
3
), pp.
584
588
.
2.
Chaikof
,
E. L.
,
Dalman
,
R. L.
,
Eskandari
,
M. K.
,
Jackson
,
B. M.
,
Lee
,
W. A.
,
Mansour
,
M. A.
,
Mastracci
,
T. M.
,
Mell
,
M.
,
Murad
,
M. H.
,
Nguyen
,
L. L.
,
Oderich
,
G. S.
,
Patel
,
M. S.
,
Schermerhorn
,
M. L.
, and
Starnes
,
B. W.
,
2018
, “
The Society for Vascular Surgery Practice Guidelines on the Care of Patients With an Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
67
(
1
), pp.
2
77
.
3.
Powell
,
J. T.
,
Sweeting
,
M. J.
,
Ulug
,
P.
,
Blankensteijn
,
J. D.
,
Lederle
,
F. A.
,
Becquemin
,
J. P.
, and
Greenhalgh
,
R. M.
,
2017
, “
Meta-Analysis of Individual-Patient Data From Evar-1, Dream, Over and Ace Trials Comparing Outcomes of Endovascular or Open Repair for Abdominal Aortic Aneurysm Over 5 Years
,”
Br. J. Surg.
,
104
(
3
), pp.
166
178
.
4.
Chang
,
R. W.
,
Goodney
,
P.
,
Tucker
,
L.-Y.
,
Okuhn
,
S.
,
Hua
,
H.
,
Rhoades
,
A.
,
Sivamurthy
,
N.
, and
Hill
,
B.
,
2013
, “
Ten-Year Results of Endovascular Abdominal Aortic Aneurysm Repair From a Large Multicenter Registry
,”
J. Vasc. Surg.
,
58
(
2
), pp.
324
332
.
5.
Budtz-Lilly
,
J.
,
Venermo
,
M.
,
Debus
,
S.
,
Behrendt
,
C. A.
,
Altreuther
,
M.
,
Beiles
,
B.
,
Szeberin
,
Z.
,
Eldrup
,
N.
,
Danielsson
,
G.
,
Thomson
,
I.
,
Wigger
,
P.
,
Björck
,
M.
,
Loftus
,
I.
, and
Mani
,
K.
,
2017
, “
Editor's Choice—Assessment of International Outcomes of Intact Abdominal Aortic Aneurysm Repair Over 9 Years
,”
Eur. J. Vasc. Endovascular Surg.
,
54
(
1
), pp.
13
20
.
6.
Kontopodis
,
N.
,
Antoniou
,
S. A.
,
Georgakarakos
,
E.
, and
Ioannou
,
C. V.
,
2015
, “
Endovascular Vs Open Aneurysm Repair in the Young
,”
J. Endovascular Ther.
,
22
(
6
), pp.
897
904
.
7.
Sweeting
,
M. J.
,
Balm
,
R.
,
Desgranges
,
P.
,
Ulug
,
P.
, and
Powell
,
J. T.
,
2015
, “
Individual-Patient Meta-Analysis of Three Randomized Trials Comparing Endovascular Versus Open Repair for Ruptured Abdominal Aortic Aneurysm
,”
Br. J. Surg.
,
102
(
10
), pp.
1229
1239
.
8.
Saedon
,
M.
,
Mt-Isa
,
S.
,
Saratzis
,
A.
,
Leung
,
E.
, and
Mahmood
,
A.
,
2015
, “
Outcome of Open Versus Endovascular Abdominal Aortic Aneurysm Repair in Obese Patients: A Systematic Review and Meta-Analysis
,”
Int. Angiol.
,
34
(1), pp.
9
15
.
9.
Rayt
,
H. S.
,
Sutton
,
A. J.
,
London
,
N. J. M.
,
Sayers
,
R. D.
, and
Bown
,
M. J.
,
2008
, “
A Systematic Review and Meta-Analysis of Endovascular Repair (Evar) for Ruptured Abdominal Aortic Aneurysm
,”
Eur. J. Vasc. Endovascular Surg.
,
36
(
5
), pp.
536
544
.
10.
Mureebe
,
L.
,
Egorova
,
N.
,
Giacovelli
,
J. K.
,
Gelijns
,
A.
,
Kent
,
K. C.
, and
McKinsey
,
J. F.
,
2008
, “
National Trends in the Repair of Ruptured Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
48
(
5
), pp.
1101
1107
.
11.
Winterborn
,
R. J.
,
Amin
,
I.
,
Lyratzopoulos
,
G.
,
Walker
,
N.
,
Varty
,
K.
, and
Campbell
,
W. B.
,
2009
, “
Preferences for Endovascular (Evar) or Open Surgical Repair Among Patients With Abdominal Aortic Aneurysms Under Surveillance
,”
J. Vasc. Surg.
,
49
(
3
), pp.
576
581
.
12.
Desai
,
M.
,
Eaton-Evans
,
J.
,
Hillery
,
C.
,
Bakhshi
,
R.
,
You
,
Z.
,
Lu
,
J.
,
Hamilton
,
G.
, and
Seifalian
,
A. M.
,
2010
, “
Aaa Stent-Grafts: Past Problems and Future Prospects
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1259
–12
75
.
13.
Van Marrewijk
,
C. J.
,
Leurs
,
L. J.
,
Vallabhaneni
,
S. R.
,
Harris
,
P. L.
,
Buth
,
J.
, and
Laheij
,
R. J.
,
2005
, “
Risk-Adjusted Outcome Analysis of Endovascular Abdominal Aortic Aneurysm Repair in a Large Population: How Do Stent-Grafts Compare?
,”
J. Endovascular Ther.
,
12
(
4
), pp.
417
429
.
14.
Efstasios Georgakarakos
,
A. X.
, and
Georgiadis
,
G. S.
,
2017
, “
Estimating the Hemodynamic Influence of Variable Main Body-to-Iliac Limb Length Ratios in Aortic Endografts
,”
Int. Angiol.
,
37
(
1
), pp.
41
45
.
15.
Raptis
,
A.
,
Xenos
,
M.
,
Georgakarakos
,
E.
,
Kouvelos
,
G.
,
Giannoukas
,
A.
, and
Matsagkas
,
M.
,
2017
, “
Hemodynamic Profile of Two Aortic Endografts Accounting for Their Postimplantation Position
,”
J. Med. Devices.
,
11
(
2
), p.
021003
.
16.
Bastos
,
G. F.
,
Rouwet
,
E. V.
,
Metz
,
R.
,
Hendriks
,
J.
,
Muhs
,
B.
, and
Verhagen
,
H.
,
2010
, “
Device-Specific Outcomes After Endovascular Abdominal Aortic Aneurysm Repair
,”
J. Cardiovasc. Surg.
,
51
(
4
), pp.
515
531
.
17.
Corbett
,
T. J.
,
Callanan
,
A.
,
Morris
,
L. G.
,
Doyle
,
B. J.
,
Grace
,
P. A.
,
Kavanagh
,
E. G.
, and
McGloughlin
,
T. M.
,
2008
, “
A Review of the In Vivo and In Vitro Biomechanical Behavior and Performance of Postoperative Abdominal Aortic Aneurysms and Implanted Stent-Grafts
,”
J. Endovascular Ther.
,
15
(
4
), pp.
468
484
.
18.
Maleux
,
G.
,
Koolen
,
M.
, and
Heye
,
S.
,
2009
, “
Complications After Endovascular Aneurysm Repair
,”
Semin. Interventional Radiol.
,
26
(
1
), pp.
003
009
.
19.
Figueroa
,
C. A.
,
Taylor
,
C. A.
,
Yeh
,
V.
,
Chiou
,
A. J.
,
Gorrepati
,
M. L.
, and
Zarins
,
C. K.
,
2010
, “
Preliminary 3D Computational Analysis of the Relationship Between Aortic Displacement Force and Direction of Endograft Movement
,”
J. Vasc. Surg.
,
51
(
6
), pp.
1488
1497
.
20.
Kandail
,
H.
,
Hamady
,
M.
, and
Xu
,
X. Y.
,
2014
, “
Patient-Specific Analysis of Displacement Forces Acting on Fenestrated Stent Grafts for Endovascular Aneurysm Repair
,”
J. Biomech.
,
47
(
14
), pp.
3546
3554
.
21.
Molony
,
D. S.
,
Kavanagh
,
E. G.
,
Madhavan
,
P.
,
Walsh
,
M. T.
, and
McGloughlin
,
T. M.
,
2010
, “
A Computational Study of the Magnitude and Direction of Migration Forces in Patient-Specific Abdominal Aortic Aneurysm Stent-Grafts
,”
Eur. J. Vasc. Endovascular Surg.
,
40
(
3
), pp.
332
339
.
22.
Morris
,
L.
,
Delassus
,
P.
,
Walsh
,
M.
, and
McGloughlin
,
T.
,
2004
, “
A Mathematical Model to Predict the In Vivo Pulsatile Drag Forces Acting on Bifurcated Stent Grafts Used in Endovascular Treatment of Abdominal Aortic Aneurysms (Aaa)
,”
J. Biomech.
,
37
(
7
), pp.
1087
1095
.
23.
Li
,
Z.
, and
Kleinstreuer
,
C.
,
2005
, “
Blood Flow and Structure Interactions in a Stented Abdominal Aortic Aneurysm Model
,”
Med. Eng. Phys.
,
27
(
5
), pp.
369
382
.
24.
Raptis
,
A.
,
Xenos
,
M.
,
Georgakarakos
,
E.
,
Kouvelos
,
G.
,
Giannoukas
,
A.
,
Labropoulos
,
N.
, and
Matsagkas
,
M.
,
2016
, “
Comparison of Physiological and Post-Endovascular Aneurysm Repair Infrarenal Blood Flow
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
3
), pp.
242
249
.
25.
FDA, 2010, “
Summary of Safety and Effectiveness Data
,” Food and Drug Administration, Silver Spring, MD, accessed May 31, 2018 , https://www.Accessdata.Fda.Gov/cdrh_docs/pdf10/p100021b.Pdf
26.
FDA, 2002, “
Summary of Safety and Effectiveness Data (SSED) EXCLUDER™ Bifurcated Endoprosthesis
,” Food and Drug Administration, Silver Spring, MD, accessed May 31, 2018, https://www.Accessdata.Fda.Gov/cdrh_docs/pdf2/p020004b.Pdf
27.
Gallo
,
D.
,
Lefieux
,
A.
,
Morganti
,
S.
,
Veneziani
,
A.
,
Reali
,
A.
,
Auricchio
,
F.
,
Conti
,
M.
, and
Morbiducci
,
U.
,
2016
, “
A Patient-Specific Follow Up Study of the Impact of Thoracic Endovascular Repair (Tevar) on Aortic Anatomy and on Post-Operative Hemodynamics
,”
Comput. Fluids
,
141
, pp.
54
61
.
28.
Gallo
,
D.
,
Vardoulis
,
O.
,
Monney
,
P.
,
Piccini
,
D.
,
Antiochos
,
P.
,
Schwitter
,
J.
,
Stergiopulos
,
N.
, and
Morbiducci
,
U.
,
2017
, “
Cardiovascular Morphometry With High-Resolution 3d Magnetic Resonance: First Application to Left Ventricle Diastolic Dysfunction
,”
Med. Eng. Phys.
,
47
, pp.
64
71
.
29.
Morbiducci
,
U.
,
Gallo
,
D.
,
Cristofanelli
,
S.
,
Ponzini
,
R.
,
Deriu
,
M. A.
,
Rizzo
,
G.
, and
Steinman
,
D. A.
,
2015
, “
A Rational Approach to Defining Principal Axes of Multidirectional Wall Shear Stress in Realistic Vascular Geometries, With Application to the Study of the Influence of Helical Flow on Wall Shear Stress Directionality in Aorta
,”
J. Biomech.
,
48
(
6
), pp.
899
906
.
30.
Sangalli
,
L. M.
,
Secchi
,
P.
,
Vantini
,
S.
, and
Veneziani
,
A.
,
2009
, “
Efficient Estimation of 3-Dimensional Curves and Their Derivatives by Free Knot Regression Slpines Applied to the Analysis of Inner Carotid Artery Centerlines
,”
J. R. Stat. Soc.
,
58
(
3
), pp.
285
306
.
31.
Meng
,
S.
,
Geyer
,
S. H.
,
Costa
,
LdF.
,
Viana
,
M. P.
, and
Weninger
,
W. J.
,
2008
, “
Objective Characterization of the Course of the Parasellar Internal Carotid Artery Using Mathematical Tools
,”
Surg. Radiol. Anat.
,
30
(
6
), pp.
519
526
.
32.
Alastruey
,
J.
,
Siggers
,
J. H.
,
Peiffer
,
V.
,
Doorly
,
D. J.
, and
Sherwin
,
S. J.
,
2012
, “
Reducing the Data: Analysis of the Role of Vascular Geometry on Blood Flow Patterns in Curved Vessels
,”
Phys. Fluids
,
24
(
3
), p.
031902
.
33.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
,
2000
, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
,
28
(
11
), pp.
1281
1299
.
34.
Morbiducci
,
U.
,
Kok
,
A. M.
,
Kwak
,
B. R.
,
Stone
,
P. H.
,
Steinman
,
D. A.
, and
Wentzel
,
J. J.
,
2016
, “
Atherosclerosis at Arterial Bifurcations: Evidence for the Role of Haemodynamics and Geometry
,”
Thromb. Haemostasis.
,
115
(
3
), pp.
484
492
.
35.
Martorell
,
J.
,
Santomá
,
P.
,
Kolandaivelu
,
K.
,
Kolachalama
,
V. B.
,
Melgar-Lesmes
,
P.
,
Molins
,
J. J.
,
Garcia
,
L.
,
Edelman
,
E. R.
, and
Balcells
,
M.
,
2014
, “
Extent of Flow Recirculation Governs Expression of Atherosclerotic and Thrombotic Biomarkers in Arterial Bifurcations
,”
Cardiovasc. Res.
,
103
(
1
), pp.
37
46
.
36.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Cadioli
,
M.
,
Esposito
,
A.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2010
, “
Mechanistic Insight Into the Physiological Relevance of Helical Blood Flow in the Human Aorta: An In Vivo Study
,”
Biomech. Model. Mechanobiol.
,
10
(
3
), pp.
339
355
.
37.
Liu
,
X.
,
Sun
,
A.
,
Fan
,
Y.
, and
Deng
,
X.
,
2014
, “
Physiological Significance of Helical Flow in the Arterial System and Its Potential Clinical Applications
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
3
15
.
38.
Gallo
,
D.
,
Steinman
,
D. A.
,
Bijari
,
P. B.
, and
Morbiducci
,
U.
,
2012
, “
Helical Flow in Carotid Bifurcation as Surrogate Marker of Exposure to Disturbed Shear
,”
J. Biomech.
,
45
(
14
), pp.
2398
2404
.
39.
Morbiducci
,
U.
,
Gallo
,
D.
,
Ponzini
,
R.
,
Massai
,
D.
,
Antiga
,
L.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2010
, “
Quantitative Analysis of Bulk Flow in Image-Based Hemodynamic Models of the Carotid Bifurcation: The Influence of Outflow Conditions as Test Case
,”
Ann. Biomed. Eng.
,
38
(
12
), pp.
3688
3705
.
40.
Caro
,
C. G.
,
Doorly
,
D. J.
,
Tarnawski
,
M.
,
Scott
,
K. T.
,
Long
,
Q.
, and
Dumoulin
,
C. L.
,
1996
, “
Non-Planar Curvature and Braching of Arteries and Non-Planar-Type Flow
,”
R. Soc.
,
452
(
1944
), pp.
185
197
.
41.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Grigioni
,
M.
, and
Redaelli
,
A.
,
2007
, “
Helical Flow as Fluid Dynamic Signature for Atherogenesis Risk in Aortocoronary Bypass. A Numeric Study
,”
J. Biomech.
,
40
(
3
), pp.
519
534
.
42.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Gallo
,
D.
,
Bignardi
,
C.
, and
Rizzo
,
G.
,
2013
, “
Inflow Boundary Conditions for Image-Based Computational Hemodynamics: Impact of Idealized Versus Measured Velocity Profiles in the Human Aorta
,”
J. Biomech.
,
46
(
1
), pp.
102
109
.
43.
Mann
,
H. B.
, and
Whitney
,
D. R.
,
1947
, “
On a Test of Whether One of Two Random Variables Is Stocastically Larger Than the Other
,”
Ann. Math. Stat.
,
18(
1
), pp.
50
60
.
44.
Shapiro
,
S. S.
, and
Wilk
,
M. B.
,
1965
, “
An Analysis of Variance Test for Normality (Complete Samples)
,”
Biometrica Trust
,
52
, pp.
591
611
.
45.
Figueroa
,
C. A.
,
Taylor
,
C. A.
,
Yeh
,
V.
,
Chiou
,
A. J.
, and
Zaris
,
C. K.
,
2009
, “
Effect of Curvature on Displacement Forces Acting on Aortic Endografts: A 3-Dimensional Computational Analysis
,”
J. Endovascular Ther.
,
16
(
3
), pp.
284
294
.
46.
Mayer
,
D.
,
Pfammatter
,
T.
,
Rancic
,
Z.
,
Hechelhammer
,
L.
,
Wilhelm
,
M.
,
Veith
,
F. J.
, and
Lachat
,
M.
,
2009
, “
10 Years of Emergency Endovascular Aneurysm Repair for Ruptured Abdominal Aortoiliac Aneurysms: Lessons Learned
,”
Ann. Surg.
,
249
(
3
), pp.
510
515
.
47.
Zarins
,
C. K.
, and
Taylor
,
C. A.
,
2009
, “
Endovascular Device Design in the Future: Transformation From Trial and Error to Computational Design
,”
J. Endovascular Ther.
,
16
(
1_Suppl
), pp.
12
21
.
48.
Howell
,
B. A.
,
Kim
,
T.
,
Cheer
,
A.
,
Dwyer
,
H.
,
Saloner
,
D.
, and
Chuter
,
T. A. M.
,
2007
, “
Computational Fluid Dynamics Within Bifurcated Abdominal Aortic Stent-Grafts
,”
J. Endovascular Ther.
,
14
(
2
), pp.
138
143
.
49.
Raptis
,
A.
,
M
,
X.
,
Kouvelos
,
G.
,
Giannoukas
,
A.
, and
Matsagkas
,
M.
,
2018
, “
Hemodynamic Performance of Afx and Nellix Endografts: A Computational Fluid Dynamics Study
,”
Interact. Cardiovasc. Thorac. Surg.
,
26
(
5
), pp.
826
833
.
50.
Georgakarakos
,
E.
,
Xenakis
,
A.
,
Manopoulos
,
C.
,
Georgiadis
,
G. S.
,
Argyriou
,
C.
,
Tsangaris
,
S.
, and
Lazarides
,
M. K.
,
2014
, “
Studying the Flow Dynamics in an Aortic Endograft With Crossed-Limbs
,”
Int. J. Artif. Organs
,
37
(
1
), pp.
81
87
.
51.
Aristokleous
,
N.
,
Kontopodis
,
N. G.
,
Tzirakis
,
K.
,
Ioannou
,
C. V.
, and
Papaharilaou
,
Y.
,
2015
, “
Hemodynamic Impact of Abdominal Aortic Aneurysm Stent-Graft Implantation-Induced Stenosis
,”
Med. Biol. Eng. Comput.
,
54
(
10
), pp.
1523
1532
.
52.
Segalova
,
P. A.
,
Xiong
,
G.
,
Rao
,
K. T.
,
Zarins
,
C. K.
, and
Taylor
,
C. A.
,
2011
, “
Evaluating Design of Abdominal Aortic Aneurysm Endografts in a Patient-Specific Model Using Computational Fluid Dynamics
,”
ASME J. Med. Devices
,
5
(
2
), p.
027505
.
53.
Segalova
,
P. A.
,
Venkateswara Rao
,
K. T.
,
Zarins
,
C. K.
, and
Taylor
,
C. A.
,
2012
, “
Computational Modeling of Shear-Based Hemolysis Caused by Renal Obstruction
,”
ASME J. Biomech. Eng.
,
134
(
2
), p.
021003
.
54.
Dowson
,
N.
,
Boult
,
M.
,
Cowled
,
P.
,
De Loryn
,
T.
, and
Fitridge
,
R.
,
2014
, “
Development of an Automated Measure of Iliac Artery Tortuosity That Successfully Predicts Early Graft-Related Complications Associated With Endovascular Aneurysm Repair
,”
Eur. J. Vasc. Endovascular Surg.
,
48
(
2
), pp.
153
160
.
55.
Karthikesalingam
,
A.
,
Holt
,
P. J.
,
Vidal-Diez
,
A.
,
Choke
,
E. C.
,
Patterson
,
B. O.
,
Thompson
,
L. J.
,
Ghatwary
,
T.
,
Bown
,
M. J.
,
Sayers
,
R. D.
, and
Thompson
,
M. M.
,
2013
, “
Predicting Aortic Complications After Endovascular Aneurysm Repair
,”
Br. J. Surg.
,
100
(
10
), pp.
1302
1311
.
56.
Wyss
,
T. R.
,
Dick
,
F.
,
Brown
,
L. C.
, and
Greenhalgh
,
R. M.
,
2011
, “
The Influence of Thrombus, Calcification, Angulation, and Tortuosity of Attachment Sites on the Time to the First Graft-Related Complication After Endovascular Aneurysm Repair
,”
J. Vasc. Surg.
,
54
(
4
), pp.
965
971
.
57.
Doyle
,
M. G.
,
Crawford
,
S. A.
,
Osman
,
E.
,
Eisenberg
,
N.
,
Tse
,
L. W.
,
Amon
,
C. H.
, and
Forbes
,
T. L.
,
2018
, “
Analysis of Iliac Artery Geometric Properties in Fenestrated Aortic Stent Graft Rotation
,”
Vasc. Endovascular Surg.
,
52
(
3
), pp.
188
194
.
58.
Wu
,
I. H.
,
Liang
,
P. C.
,
Huang
,
S. C.
,
Chi
,
N. S.
,
Lin
,
F. Y.
, and
Wang
,
S. S.
,
2009
, “
The Significance of Endograft Geometry on the Incidence of Intraprosthetic Thrombus Deposits After Abdominal Endovascular Grafting
,”
Eur. J. Vasc. Endovascular Surg.
,
38
(
6
), pp.
741
747
.
59.
Figueroa
,
C. A.
, and
Zarins
,
C. K.
,
2011
, “
Computational Analysis of Displacement Forces Acting on Endografts Used to Treat Aortic Aneurysms
,”
Biomech. Mechanobiol. Aneurysms. Stud. Mechanobiol., Tissue Eng. Biomater.
,
7
, pp.
221
246
.
60.
van Bogerijen
,
G. H. W.
,
Auricchio
,
F.
,
Conti
,
M.
,
Lefieux
,
A.
,
Reali
,
A.
,
Veneziani
,
A.
,
Tolenaar
,
J. L.
,
Moll
,
F. L.
,
Rampoldi
,
V.
, and
Trimarchi
,
S.
,
2014
, “
Aortic Hemodynamics After Thoracic Endovascular Aortic Repair, With Particular Attention to the Bird-Beak Configuration
,”
J. Endovascular Ther.
,
21
(
6
), pp.
791
802
.
61.
Mestres
,
G.
,
Maeso
,
J.
,
Fernandez
,
V.
,
Allegue
,
N.
,
Constenla
,
I.
, and
Matas
,
M.
,
2009
, “
Incidence and Evolution of Mural Thrombus in Abdominal Aortic Endografts
,”
Ann. Vasc. Surg.
,
23
(
5
), pp.
627
633
.
62.
Wegener
,
M.
,
Gorich
,
J.
,
Kramer
,
S.
,
Fleiter
,
T.
,
Tomczak
,
R.
,
Scharrer-Pamler
,
R.
,
Kapfer
,
X.
, and
Brambs
,
H.
,
2001
, “
Thrombus Formation in Aortic Endografts
,”
J. Endovascular Ther.
,
8
(
4
), pp.
372
379
.
63.
Maleux
,
G.
,
Koolen
,
M.
,
Heye
,
S.
,
Heremans
,
B.
, and
Nevelsteen
,
A.
,
2008
, “
Mural Thrombotic Deposits in Abdominal Aortic Endografts are Common and Do Not Require Additional Treatment at Short-Term and Midterm Follow-Up
,”
J. Vasc. Interventional Radiology
,
19
(
11
), pp.
1558
1562
.
64.
Méndez Rojano
,
R.
,
Mendez
,
S.
, and
Nicoud
,
F.
,
2018
, “
Introducing the Pro-Coagulant Contact System in the Numerical Assessment of Device-Related Thrombosis
,”
Biomech. Model. Mechanobiol.
,
17
(3), p. 185.
65.
Hansen
,
K. B.
,
Arzani
,
A.
, and
Shadden
,
S. C.
,
2015
, “
Mechanical Platelet Activation Potential in Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
137
(
4
), p.
041005
.
66.
Diamond
,
S. L.
,
Yazdani
,
A.
,
Li
,
H.
,
Humphrey
,
J. D.
, and
Karniadakis
,
G. E.
,
2017
, “
A General Shear-Dependent Model for Thrombus Formation
,”
PLOS Comput. Biol.
,
13
(
1
), p.
e1005291
.
67.
Biasetti
,
J.
,
Spazzini
,
P. G.
,
Swedenborg
,
J.
, and
Gasser
,
T. C.
,
2012
, “
An Integrated Fluid-Chemical Model Toward Modeling the Formation of Intra-Luminal Thrombus in Abdominal Aortic Aneurysms
,”
Front. Physiol.
,
3
, p.
266
.
68.
Shadden
,
S. C.
, and
Hendabadi
,
S.
,
2012
, “
Potential Fluid Mechanic Pathways of Platelet Activation
,”
Biomech. Model. Mechanobiol.
,
12
(
3
), pp.
467
474
.
69.
Taylor
,
J. O.
,
Meyer
,
R. S.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2016
, “
Development of a Computational Model for Macroscopic Predictions of Device-Induced Thrombosis
,”
Biomech. Model. Mechanobiol.
,
15
(
6
), pp.
1713
1731
.
You do not currently have access to this content.