Despite major advances made in modeling vascular tissue biomechanics, the predictive power of constitutive models is still limited by uncertainty of the input data. Specifically, key measurements, like the geometry of the stress-free (SF) state, involve a definite, sometimes non-negligible, degree of uncertainty. Here, we introduce a new approach for sensitivity analysis of vascular hyperelastic constitutive models to uncertainty in SF measurements. We have considered two vascular hyperelastic models: the phenomenological Fung model and the structure-motivated Holzapfel–Gasser–Ogden (HGO) model. Our results indicate up to 160% errors in the identified constitutive parameters for a 5% measurement uncertainty in the SF data. Relative margins of errors of up to 30% in the luminal pressure, 36% in the axial force, and over 200% in the stress predictions were recorded for 10% uncertainties. These findings are relevant to the large body of studies involving experimentally based modeling and analysis of vascular tissues. The impact of uncertainties on calibrated constitutive parameters is significant in context of studies that use constitutive parameters to draw conclusions about the underlying microstructure of vascular tissues, their growth and remodeling processes, and aging and disease states. The propagation of uncertainties into the predictions of biophysical parameters, e.g., force, luminal pressure, and wall stresses, is of practical importance in the design and execution of clinical devices and interventions. Furthermore, insights provided by the present findings may lead to more robust parameters identification techniques, and serve as selection criteria in the trade-off between model complexity and sensitivity.

References

References
1.
Humphrey
,
J. D.
,
2008
, “
Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-Cellular Levels
,”
Cell Biochem. Biophys.
,
50
(
2
), pp.
53
78
.
2.
Wicker
,
B.
,
Hutchens
,
H.
,
Wu
,
Q.
,
Yeh
,
A.
, and
Humphrey
,
J.
,
2008
, “
Normal Basilar Artery Structure and Biaxial Mechanical Behaviour
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
539
551
.
3.
O'Rourke
,
M.
,
1990
, “
Arterial Stiffness, Systolic Blood Pressure, and Logical Treatment of Arterial Hypertension
,”
Hypertension
,
15
(
4
), pp.
339
347
.
4.
Vorp
,
D. A.
, and
Geest
,
J. P. V.
,
2005
, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture
,”
Arterioscler., Thromb., Vasc. Biol.
,
25
(
8
), pp.
1558
1566
.
5.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
,
39
(
7
), pp.
1324
1334
.
6.
Rodriguez
,
J. F.
,
Ruiz
,
C.
,
Doblare
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021023
.
7.
Eberth
,
J. F.
,
Taucer
,
A. I.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2009
, “
Mechanics of Carotid Arteries in a Mouse Model of Marfan Syndrome
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1093
1104
.
8.
Holzapfel
,
G. A.
,
2009
, “
Arterial Tissue in Health and Disease: Experimental Data, Collagen-Based Modeling and Simulation, Including Aortic Dissection
,”
Biomechanical Modelling at the Molecular, Cellular and Tissue Levels
, Vol. 508,
G. A.
Holzapfel
and
R. W.
Ogden
, eds.,
Springer
,
Vienna, Austria
, pp.
259
344
.
9.
Ferruzzi
,
J.
,
Vorp
,
D. A.
, and
Humphrey
,
J. D.
,
2010
, “
On Constitutive Descriptors of the Biaxial Mechanical Behaviour of Human Abdominal Aorta and Aneurysms
,”
J. R. Soc. Interface
,
8
(
56
), pp.
435
450
.
10.
Teng
,
Z.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Feng
,
J.
,
Yuan
,
J.
,
Lu
,
Q.
,
Sutcliffe
,
M. P. F.
,
Brown
,
A. J.
,
Jing
,
Z.
, and
Gillard
,
J. H.
,
2014
, “
Material Properties of Components in Human Carotid Atherosclerotic Plaques: A Uniaxial Extension Study
,”
Acta Biomater.
,
10
(
12
), pp.
5055
5063
.
11.
Thondapu
,
V.
,
Bourantas
,
C. V.
,
Foin
,
N.
,
Jang
,
I.-K.
,
Serruys
,
P. W.
, and
Barlis
,
P.
,
2016
, “
Biomechanical Stress in Coronary Atherosclerosis: Emerging Insights From Computational Modelling
,”
Eur. Heart J.
,
38
(
2
), pp.
81
92
.
12.
Rogers
,
C.
,
Tseng
,
D. Y.
,
Squire
,
J. C.
, and
Edelman
,
E. R.
,
1999
, “
Balloon-Artery Interactions During Stent Placement: A Finite Element Analysis Approach to Pressure, Compliance, and Stent Design as Contributors to Vascular Injury
,”
Circ. Res.
,
84
(
4
), pp.
378
383
.
13.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bauer
,
C. A. J.
,
2002
, “
A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
,
30
(
6
), pp.
753
767
.
14.
Liang
,
D. K.
,
Yang
,
D. Z.
,
Qi
,
M.
, and
Wang
,
W. Q.
,
2005
, “
Finite Element Analysis of the Implantation of a Balloon-Expandable Stent in a Stenosed Artery
,”
Int. J. Cardiol.
,
104
(
3
), pp.
314
318
.
15.
Kiousis
,
D. E.
,
Wulff
,
A. R.
, and
Holzapfel
,
G. A.
,
2009
, “
Experimental Studies and Numerical Analysis of the Inflation and Interaction of Vascular Balloon Catheter-Stent Systems
,”
Ann. Biomed. Eng.
,
37
(
2
), pp.
315
330
.
16.
Prendergast
,
P. J.
,
Lally
,
C.
,
Daly
,
S.
,
Reid
,
A. J.
,
Lee
,
T. C.
,
Quinn
,
D.
, and
Dolan
,
F.
,
2003
, “
Analysis of Prolapse in Cardiovascular Stents: A Constitutive Equation for Vascular Tissue and Finite-Element Modelling
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
692
699
.
17.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P. J.
,
2005
, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis
,”
J. Biomech.
,
38
(
8
), pp.
1574
1581
.
18.
Zahedmanesh
,
H.
, and
Lally
,
C.
,
2009
, “
Determination of the Influence of Stent Strut Thickness Using the Finite Element Method: Implications for Vascular Injury and in-Stent Restenosis
,”
Med. Biol. Eng. Comput.
,
47
(
4
), pp.
385
393
.
19.
Zahedmanesh
,
H.
,
John Kelly
,
D.
, and
Lally
,
C.
,
2010
, “
Simulation of a Balloon Expandable Stent in a Realistic Coronary Artery-Determination of the Optimum Modelling Strategy
,”
J. Biomech.
,
43
(
11
), pp.
2126
2132
.
20.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Gasser
,
T. C.
,
2005
, “
Changes in the Mechanical Environment of Stenotic Arteries During Interaction With Stents: Computational Assessment of Parametric Stent Designs
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
166
180
.
21.
Wu
,
W.
,
Wang
,
W.-Q.
,
Yang
,
D.-Z.
, and
Qi
,
M.
,
2007
, “
Stent Expansion in Curved Vessel and Their Interactions: A Finite Element Analysis
,”
J. Biomech.
,
40
(
11
), pp.
2580
2585
.
22.
Mortier
,
P.
,
Holzapfel
,
G. A.
,
Beule
,
M. D.
,
Loo
,
D. V.
,
Taeymans
,
Y.
,
Segers
,
P.
,
Verdonck
,
P.
, and
Verhegghe
,
B.
,
2010
, “
A Novel Simulation Strategy for Stent Insertion and Deployment in Curved Coronary Bifurcations: Comparison of Three Drug-Eluting Stents
,”
Ann. Biomed. Eng.
,
38
(
1
), pp.
88
99
.
23.
Martin
,
D. M.
,
Murphy
,
E. A.
, and
Boyle
,
F. J.
,
2014
, “
Computational Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: Influence of Stent and Vessel Deformation
,”
Med. Eng. Phys.
,
36
(
8
), pp.
1047
1056
.
24.
Antoniadis
,
A. P.
,
Mortier
,
P.
,
Kassab
,
G.
,
Dubini
,
G.
,
Foin
,
N.
,
Murasato
,
Y.
,
Giannopoulos
,
A. A.
,
Tu
,
S.
,
Iwasaki
,
K.
,
Hikichi
,
Y.
,
Migliavacca
,
F.
,
Chiastra
,
C.
,
Wentzel
,
J. J.
,
Gijsen
,
F.
,
Reiber
,
J. H. C.
,
Barlis
,
P.
,
Serruys
,
P. W.
,
Bhatt
,
D. L.
,
Stankovic
,
G.
,
Edelman
,
E. R.
,
Giannoglou
,
G. D.
,
Louvard
,
Y.
, and
Chatzizisis
,
Y. S.
,
2015
, “
Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting: Expert Review Document on Techniques and Clinical Implementation
,”
JACC: Cardiovasc. Interventions
,
8
(
10
), pp.
1281
1296
.
25.
Gupta
,
B. S.
, and
Kasyanov
,
V. A.
,
1997
, “
Biomechanics of Human Common Carotid Artery and Design of Novel Hybrid Textile Compliant Vascular Grafts
,”
J. Biomed. Mater. Res.
,
34
(
3
), pp.
341
349
.
26.
Greenwald
,
S. E.
, and
Berry
,
C. L.
,
2000
, “
Improving Vascular Grafts: The Importance of Mechanical and Haemodynamic Properties
,”
J. Pathology
,
190
(
3
), pp.
292
299
.
27.
Konig
,
G.
,
McAllister
,
T. N.
,
Dusserre
,
N.
,
Garrido
,
S. A.
,
Iyican
,
C.
,
Marini
,
A.
,
Fiorillo
,
A.
,
Avila
,
H.
,
Wystrychowski
,
W.
,
Zagalski
,
K.
,
Maruszewski
,
M.
,
Jones
,
A. L.
,
Cierpka
,
L.
,
de la Fuente
,
L. M.
, and
L'Heureux
,
N.
,
2009
, “
Mechanical Properties of Completely Autologous Human Tissue Engineered Blood Vessels Compared to Human Saphenous Vein and Mammary Artery
,”
Biomaterials
,
30
(
8
), pp.
1542
1550
.
28.
McClure
,
M. J.
,
Sell
,
S. A.
,
Simpson
,
D. G.
,
Walpoth
,
B. H.
, and
Bowlin
,
G. L.
,
2010
, “
A Three-Layered Electrospun Matrix to Mimic Native Arterial Architecture Using Polycaprolactone, Elastin, and Collagen: A Preliminary Study
,”
Acta Biomater.
,
6
(
7
), pp.
2422
2433
.
29.
McClure
,
M. J.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
,
2012
, “
Tri-Layered Vascular Grafts Composed of Polycaprolactone, Elastin, Collagen, and Silk: Optimization of Graft Properties
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
48
61
.
30.
Singh
,
C.
,
Wong
,
C. S.
, and
Wang
,
X.
,
2015
, “
Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries
,”
J. Funct. Biomater.
,
6
(
3
), pp.
500
525
.
31.
Harrison
,
S.
,
Tamimi
,
E.
,
Uhlorn
,
J.
,
Leach
,
T.
, and
Geest
,
J. P. V.
,
2016
, “
Computationally Optimizing the Compliance of a Biopolymer Based Tissue Engineered Vascular Graft
,”
ASME J. Biomech. Eng.
,
138
(
1
), p.
014505
.
32.
Jia
,
Y.
,
Qiao
,
Y.
,
Ricardo Argueta-Morales
,
I.
,
Maung
,
A.
,
Norfleet
,
J.
,
Bai
,
Y.
,
Divo
,
E.
,
Kassab
,
A. J.
, and
DeCampli
,
W. M.
,
2017
, “
Experimental Study of Anisotropic Stress/Strain Relationships of Aortic and Pulmonary Artery Homografts and Synthetic Vascular Grafts
,”
ASME J. Biomech. Eng.
,
139
(
10
), p.
101003
.
33.
Keyes
,
J. T.
,
Lockwood
,
D. R.
,
Utzinger
,
U.
,
Montilla
,
L. G.
,
Witte
,
R. S.
, and
Geest
,
J. P. V.
,
2013
, “
Comparisons of Planar and Tubular Biaxial Tensile Testing Protocols of the Same Porcine Coronary Arteries
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1579
1591
.
34.
Fung
,
Y. C.
,
1991
, “
What Are the Residual Stresses Doing in Our Blood Vessels?
,”
Ann. Biomed. Eng.
,
19
(
3
), pp.
237
249
.
35.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
, pp.
1
48
.
36.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
37.
Volokh
,
K. Y.
,
2006
, “
Stresses in Growing Soft Tissues
,”
Acta Biomater.
,
2
(
5
), pp.
493
504
.
38.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Auer
,
M.
,
Regitnig
,
P.
, and
Ogden
,
R. W.
,
2007
, “
Layer-Specific 3D Residual Deformations of Human Aortas With Non-Atherosclerotic Intimal Thickening
,”
Ann. Biomed. Eng.
,
35
(
4
), pp.
530
545
.
39.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
, “
Modelling the Layer-Specific Three-Dimensional Residual Stresses in Arteries, With an Application to the Human Aorta
,”
J. R. Soc. Interface
,
46
, pp.
787
799
.
40.
Vaishnav
,
R. N.
, and
Vossoughi
,
J.
,
1987
, “
Residual Stress and Strain in Aortic Segments
,”
J. Biomech.
,
20
(
3
), p.
239
.
41.
Matsumoto
,
T.
, and
Hayashi
,
K.
,
1996
, “
Stress and Strain Distribution in Hypertensive and Normotensive Rat Aorta Considering Residual Strain
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
62
73
.
42.
Bellini
,
C.
,
Ferruzzi
,
J.
,
Roccabianca
,
S.
,
DiMartino
,
E.
, and
Humphrey
,
J.
,
2014
, “
A Microstructurally Motivated Model of Arterial Wall Mechanics With Mechanobiological Implications
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
488
502
.
43.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1996
, “
Direct Measurement of Transverse Residual Strains in Aorta
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
270
(
2
), pp.
H750
H759
.
44.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1987
, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
,
20
(
1
), pp.
7
17
.
45.
Kang
,
T.
, and
Humphrey
,
J.
,
1991
, “
Finite Deformation of an Inverted Artery
,”
Advances in Bioengineering
, American Society of Mechanical Engineers,
New York
.
46.
Sokolis
,
D. P.
,
2015
, “
Effects of Aneurysm on the Directional, Regional, and Layer Distribution of Residual Strains in Ascending Thoracic Aorta
,”
J. Mech. Behav. Biomed. Mater.
,
46
, pp.
229
243
.
47.
Sassani
,
S. G.
,
Kakisis
,
J.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2015
, “
Layer-Dependent Wall Properties of Abdominal Aortic Aneurysms: Experimental Study and Material Characterization
,”
J. Mech. Behav. Biomed. Mater.
,
49
, pp.
141
161
.
48.
Saini
,
A.
,
Berry
,
C.
, and
Greenwald
,
S.
,
1995
, “
Effect of Age and Sex on Residual Stress in the Aorta
,”
J. Vasc. Res.
,
32
(
6
), pp.
398
405
.
49.
Yuan
,
J.
,
Teng
,
Z.
,
Feng
,
J.
,
Zhang
,
Y.
,
Brown
,
A. J.
,
Gillard
,
J. H.
,
Jing
,
Z.
, and
Lu
,
Q.
,
2015
, “
Influence of Material Property Variability on the Mechanical Behaviour of Carotid Atherosclerotic Plaques: A 3D Fluid-Structure Interaction Analysis
,”
Int. J. Numer. Methods Biomed. Eng.
,
31
(
8
), p. e02722.
50.
Eck
,
V. G.
,
Feinberg
,
J.
,
Langtangen
,
H. P.
, and
Hellevik
,
L. R.
,
2015
, “
Stochastic Sensitivity Analysis for Timing and Amplitude of Pressure Waves in the Arterial System
,”
Int. J. Numer. Methods Biomed. Eng.
,
31
(
4
), p. e02711.
51.
Eck
,
V. G.
,
Donders
,
W. P.
,
Sturdy
,
J.
,
Feinberg
,
J.
,
Delhaas
,
T.
,
Hellevik
,
L. R.
, and
Huberts
,
W.
,
2016
, “
A Guide to Uncertainty Quantification and Sensitivity Analysis for Cardiovascular Applications
,”
Int. J. Numer. Methods Biomed. Eng.
,
32
(
8
), p. e02755.
52.
Biehler
,
J.
,
Kehl
,
S.
,
Gee
,
M. W.
,
Schmies
,
F.
,
Pelisek
,
J.
,
Maier
,
A.
,
Reeps
,
C.
,
Eckstein
,
H.-H.
, and
Wall
,
W. A.
,
2016
, “
Probabilistic Noninvasive Prediction of Wall Properties of Abdominal Aortic Aneurysms Using Bayesian Regression
,”
Biomech. Model. Mechanobiol.
,
16
(1), pp.
1
17
.
53.
Eck
,
V. G.
,
Sturdy
,
J.
, and
Hellevik
,
L. R.
,
2017
, “
Effects of Arterial Wall Models and Measurement Uncertainties on Cardiovascular Model Predictions
,”
J. Biomech.
,
50
, pp.
188
194
.
54.
Chen
,
P.
,
Quarteroni
,
A.
, and
Rozza
,
G.
,
2013
, “
Simulation-Based Uncertainty Quantification of Human Arterial Network Hemodynamics
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
6
), pp.
698
721
.
55.
Sankaran
,
S.
,
Kim
,
H. J.
,
Choi
,
G.
, and
Taylor
,
C. A.
,
2016
, “
Uncertainty Quantification in Coronary Blood Flow Simulations: Impact of Geometry, Boundary Conditions and Blood Viscosity
,”
J. Biomech.
,
49
(
12
), pp.
2540
2547
.
56.
Laz
,
P. J.
,
Stowe
,
J. Q.
,
Baldwin
,
M. A.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2007
, “
Incorporating Uncertainty in Mechanical Properties for Finite Element-Based Evaluation of Bone Mechanics
,”
J. Biomech.
,
40
(
13
), pp.
2831
2836
.
57.
Wille
,
H.
,
Rank
,
E.
, and
Yosibash
,
Z.
,
2012
, “
Prediction of the Mechanical Response of the Femur With Uncertain Elastic Properties
,”
J. Biomech.
,
45
(
7
), pp.
1140
1148
.
58.
Campoli
,
G.
,
Bolsterlee
,
B.
,
Helm
,
F. V. D.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2014
, “
Effects of Densitometry, Material Mapping and Load Estimation Uncertainties on the Accuracy of Patient-Specific Finite-Element Models of the Scapula
,”
J. R. Soc. Interface
,
11
(
93
), p.
20131146
.
59.
Gasser
,
T. C.
, and
Grytsan
,
A.
,
2017
, “
Biomechanical Modeling the Adaptation of Soft Biological Tissue
,”
Curr. Opin. Biomed. Eng.
,
1
, pp.
71
77
.
60.
Biehler
,
J.
,
Gee
,
M. W.
, and
Wall
,
W. A.
,
2015
, “
Towards Efficient Uncertainty Quantification in Complex and Large-Scale Biomechanical Problems Based on a Bayesian Multi-Fidelity Scheme
,”
Biomech. Model. Mechanobiol.
,
14
(
3
), pp.
489
513
.
61.
Heusinkveld
,
M. H. G.
,
Quicken
,
S.
,
Holtackers
,
R. J.
,
Huberts
,
W.
,
Reesink
,
K. D.
,
Delhaas
,
T.
, and
Spronck
,
B.
,
2017
, “
Uncertainty Quantification and Sensitivity Analysis of an Arterial Wall Mechanics Model for Evaluation of Vascular Drug Therapies
,”
Biomech. Model. Mechanobiol.
, 17(
1
), pp.
1
15
.
62.
Eddhahak-Ouni
,
A.
,
Masson
,
I.
,
Mohand-Kaci
,
F.
, and
Zidi
,
M.
,
2013
, “
Influence of Random Uncertainties of Anisotropic Fibrous Model Parameters on Arterial Pressure Estimation
,”
Appl. Math. Mech.
,
34
(
5
), pp.
529
540
.
63.
Zeinali-Davarani
,
S.
,
Choi
,
J.
, and
Baek
,
S.
,
2009
, “
On Parameter Estimation for Biaxial Mechanical Behavior of Arteries
,”
J. Biomech.
,
42
(
4
), pp.
524
530
.
64.
Kamenskiy
,
A. V.
,
Dzenis
,
Y. A.
,
Kazmi
,
S. A. J.
,
Pemberton
,
M. A.
,
Pipinos
,
I. I.
,
Phillips
,
N. Y.
,
Herber
,
K.
,
Woodford
,
T.
,
Bowen
,
R. E.
,
Lomneth
,
C. S.
, and
MacTaggart
,
J. N.
,
2014
, “
Biaxial Mechanical Properties of the Human Thoracic and Abdominal Aorta, Common Carotid, Subclavian, Renal and Common Iliac Arteries
,”
Biomech. Model. Mechanobiol.
,
13
(
6
), pp.
1341
1359
.
65.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1983
, “
Three-Dimensional Stress Distribution in Arteries
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
268
274
.
66.
Fung
,
Y.-C.
,
1993
,
Biomechanics
,
Springer
,
New York
.
67.
Garcia
,
J. R.
,
Lamm
,
S. D.
, and
Han
,
H.-C.
,
2013
, “
Twist Buckling Behavior of Arteries
,”
Biomech. Model. Mechanobiol.
,
12
(
5
), pp.
915
927
.
68.
Wang
,
C.
,
Garcia
,
M.
,
Lu
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
,
2006
, “
Three-Dimensional Mechanical Properties of Porcine Coronary Arteries: A Validated Two-Layer Model
,”
Am. J. Physiol.—Heart Circ. Physiol.
,
291
(
3
), pp.
H1200
H1209
.
69.
Baek
,
S.
,
Gleason
,
R. L.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2007
, “
Theory of Small on Large: Potential Utility in Computations of Fluid-Solid Interactions in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
3070
3078
.
70.
Kamenskiy
,
A. V.
,
Pipinos
,
I. I.
,
Dzenis
,
Y. A.
,
Lomneth
,
C. S.
,
Kazmi
,
S. A. J.
,
Phillips
,
N. Y.
, and
MacTaggart
,
J. N.
,
2014
, “
Passive Biaxial Mechanical Properties and In Vivo Axial Pre-Stretch of the Diseased Human Femoropopliteal and Tibial Arteries
,”
Acta Biomater.
,
10
(
3
), pp.
1301
1313
.
71.
Sommer
,
G.
, and
Holzapfel
,
G. A.
,
2012
, “
3D Constitutive Modeling of the Biaxial Mechanical Response of Intact and Layer-Dissected Human Carotid Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
116
128
.
72.
Hayashi
,
K.
,
Handa
,
H.
,
Nagasawa
,
S.
,
Okumura
,
A.
, and
Moritake
,
K.
,
1980
, “
Stiffness and Elastic Behavior of Human Intracranial and Extracranial Arteries
,”
J. Biomech.
,
13
(
2
), pp.
175
184
.
73.
Kasyanov
,
V.
,
Ozolanta
,
I.
,
Purinya
,
B.
,
Ozols
,
A.
, and
Kancevich
,
V.
,
2003
, “
Compliance of a Biocomposite Vascular Tissue in Longitudinal and Circumferential Directions as a Basis for Creating Artificial Substitutes
,”
Mech. Compos. Mater.
,
39
(
4
), pp.
347
358
.
74.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
, “
On Planar Biaxial Tests for Anisotropic Nonlinearly Elastic Solids. A Continuum Mechanical Framework
,”
Math. Mech. Solids
,
14
(
5
), pp.
474
489
.
75.
Sokolis
,
D. P.
,
2013
, “
Experimental Investigation and Constitutive Modeling of the 3D Histomechanical Properties of Vein Tissue
,”
Biomech. Model. Mechanobiol.
,
12
(
3
), pp.
431
451
.
76.
Sokolis
,
D. P.
,
Savva
,
G. D.
,
Papadodima
,
S. A.
, and
Kourkoulis
,
S. K.
,
2017
, “
Regional Distribution of Circumferential Residual Strains in the Human Aorta According to Age and Gender
,”
J. Mech. Behav. Biomed. Mater.
,
67
, pp.
87
100
.
77.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1991
, “
Species Dependence of the Zero-Stress State of Aorta: Pig Versus Rat
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
446
451
.
78.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2004
, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
264
275
.
79.
Desyatova
,
A.
,
MacTaggart
,
J.
, and
Kamenskiy
,
A.
,
2017
, “
Constitutive Modeling of Human Femoropopliteal Artery Biaxial Stiffening Due to Aging and Diabetes
,”
Acta Biomater.
,
64
, pp.
50
58
.
80.
Spronck
,
B.
,
Heusinkveld
,
M. H. G.
,
Donders
,
W. P.
,
Lepper
,
A. G. W. D.
,
Roodt
,
J. O.
,
Kroon
,
A. A.
,
Delhaas
,
T.
, and
Reesink
,
K. D.
,
2015
, “
A Constitutive Modeling Interpretation of the Relationship Among Carotid Artery Stiffness, Blood Pressure, and Age in Hypertensive Subjects
,”
Am. J. Physiol.–Heart Circ. Physiol.
,
308
(
6
), pp.
H568
H582
.
You do not currently have access to this content.