Current implant materials and designs used in spinal fusion show high rates of subsidence. There is currently a need for a method to predict the mechanical properties of the endplate using clinically available tools. The purpose of this study was to develop a predictive model of the mechanical properties of the vertebral endplate at a scale relevant to the evaluation of current medical implant designs and materials. Twenty vertebrae (10 L1 and 10 L2) from 10 cadavers were studied using dual-energy X-ray absorptiometry to define bone status (normal, osteopenic, or osteoporotic) and computed tomography (CT) to study endplate thickness (μm), density (mg/mm3), and mineral density of underlying trabecular bone (mg/mm3) at discrete sites. Apparent Oliver–Pharr modulus, stiffness, maximum tolerable pressure (MTP), and Brinell hardness were measured at each site using a 3 mm spherical indenter. Predictive models were built for each measured property using various measures obtained from CT and demographic data. Stiffness showed a strong correlation between the predictive model and experimental values (r = 0.85), a polynomial model for Brinell hardness had a stronger predictive ability compared to the linear model (r = 0.82), and the modulus model showed weak predictive ability (r = 0.44), likely due the low indentation depth and the inability to image the endplate at that depth (≈0.15 mm). Osteoporosis and osteopenia were found to be the largest confounders of the measured properties, decreasing them by approximately 50%. It was confirmed that vertebral endplate mechanical properties could be predicted using CT and demographic indices.

References

1.
Noshchenko
,
A.
,
Hoffecker
,
l.
,
Lindley
,
E. M.
,
Burger
,
E. L.
,
Cain
,
C. M.
, and
Patel
,
V. V.
,
2015
, “
Long-Term Treatment Effects of Lumbar Arthrodesis in Degenerative Disk Disease: A Systematic Review With Meta-Analysis
,”
J. Spinal Disord. Tech.
,
28
(
9
), pp.
E493
E521
.
2.
Cahill
,
K. S.
,
Chi
,
J. H.
,
Day
,
A.
, and
Claus
,
E. B.
,
2009
, “
Prevalence, Complications, and Hospital Charges Associated With Use of Bone-Morphogenetic Proteins in Spinal Fusion Procedures
,”
JAMA
,
302
(
1
), pp.
58
66
.
3.
Group
,
M. R.
,
2015
, “
Spinal Implants US 2015 Market Analysis
,” Millenium Research Group, Inc., Report-203768 M.R., ed., Toronto, Ontario.
4.
McInnis
,
M. M.
,
Olchanski
,
N.
,
Kemner
,
J. E.
, and
Goss
,
T.
, “
PMS17 Budget Impact of New RhBMP-2 Formulation in Patients Undergoing Posterolateral Spinal Fusion Procedures for Degenerative Disc Disease in Randomized Controlled Trial (RCT)
,”
Value Health
,
13
(
7
), p.
A305
.
5.
Carreon
,
L. Y.
,
Glassman
,
S. D.
,
Djurasovic
,
M.
,
Campbell
,
M. J.
,
Puno
,
R. M.
,
Johnson
,
J. R.
, and
Dimar
,
J. R.
,
2009
, “
RhBMP-2 Versus Iliac Crest Bone Graft for Lumbar Spine Fusion in Patients Over 60 Years of Age: A Cost-Utility Study
,”
Spine
,
34
(
3
), pp.
238
243
.
6.
Glassman
,
S. D.
,
Carreon
,
L. Y.
,
Djurasovic
,
M.
,
Campbell
,
M. J.
,
Puno
,
R. M.
,
Johnson
,
J. R.
, and
Dimar
,
J. R.
,
2008
, “
RhBMP-2 Versus Iliac Crest Bone Graft for Lumbar Spine Fusion: A Randomized, Controlled Trial in Patients Over Sixty Years of Age
,”
Spine
,
33
(
26
), pp.
2843
2849
.
7.
Alvin
,
M. D.
,
Lubelski
,
D.
,
Abdullah
,
K. G.
,
Whitmore
,
R. G.
,
Benzel
,
E. C.
, and
Mroz
,
T. E.
,
2016
, “
Cost-Utility Analysis of Instrumented Fusion Versus Decompression Alone for Grade I L4–L5 Spondylolisthesis at 1-Year Follow-Up: A Pilot Study
,”
Clin. Spine Surg.
,
29
(
2
), pp.
E80
E86
.
8.
Deyo
,
R. A.
,
Martin
,
B. I.
,
Kreuter
,
W.
,
Jarvik
,
J. G.
,
Angier
,
H.
, and
Mirza
,
S. K.
,
2011
, “
Revision Surgery Following Operations for Lumbar Stenosis
,”
J. Bone Jt Surg., Am. Vol.
,
93
(
21
), p.
1979
.
9.
Marchi
,
L.
,
Oliveira
,
L.
,
Coutinho
,
E.
, and
Pimenta
,
L.
,
2012
, “
Results and Complications After 2-Level Axial Lumbar Interbody Fusion With a Minimum 2-Year Follow-Up
,”
J. Neurosurg.
,
17
(
3
), pp.
187
192
.
10.
Rodriguez
,
A. G.
,
Rodriguez-Soto
,
A. E.
,
Burghardt
,
A. J.
,
Berven
,
S.
,
Majumdar
,
S.
, and
Lotz
,
J. C.
,
2012
, “
Morphology of the Human Vertebral Endplate
,”
J. Orthop. Res.
,
30
(
2
), pp.
280
287
.
11.
Hulme
,
P. A.
,
Boyd
,
S. K.
, and
Ferguson
,
S. J.
, “
Regional Variation in Vertebral Bone Morphology and Its Contribution to Vertebral Fracture Strength
,”
Bone
,
41
(
6
), pp.
946
957
.
12.
Fields
,
A. J.
,
Costabal
,
F. S.
,
Rodriguez
,
A. G.
, and
Lotz
,
J. C.
,
2012
, “
Seeing Double: A Comparison of Microstructure, Biomechanical Function, and Adjacent Disc Health Between Double-Layer and Single-Layer Vertebral Endplates
,”
Spine
,
37
(
21
), pp.
E1310
E1317
.
13.
Stevens
,
T.
,
2007
,
Class II Special Controls Guidance Document: Intervertebral Body Fusion Device
,
Food and Drug Administration
,
Silver Spring, MD
.
14.
Dall'Ara
,
E.
,
Karl
,
C.
,
Mazza
,
G.
,
Franzoso
,
G.
,
Vena
,
P.
,
Pretterklieber
,
M.
,
Pahr
,
D.
, and
Zysset
,
P.
,
2013
, “
Tissue Properties of the Human Vertebral Body Sub-Structures Evaluated by Means of Microindentation
,”
J. Mech. Behav. Biomed. Mater.
,
25
, pp.
23
32
.
15.
Grant
,
J.
,
Oxland
,
T. R.
,
Dvorak
,
M. F.
, and
Fisher
,
C. G.
,
2002
, “
The Effects of Bone Density and Disc Degeneration on the Structural Property Distributions in the Lower Lumbar Vertebral Endplates
,”
J. Orthop. Res.
,
20
(
5
), pp.
1115
1120
.
16.
Grant
,
J. P.
,
Oxland
,
T. R.
, and
Dvorak
,
M. F.
,
2001
, “
Mapping the Structural Properties of the Lumbosacral Vertebral Endplates
,”
Spine
,
26
(
8
), pp.
889
896
.
17.
Noshchenko
,
A.
,
Plaseied
,
A.
,
Patel
,
V. V.
,
Burger
,
E.
,
Baldini
,
T.
, and
Yun
,
L.
,
2013
, “
Correlation of Vertebral Strength Topography With three-Dimensional Computed Tomographic Structure
,”
Spine
,
38
(
4
), pp.
339
349
.
18.
Liebschner
,
M. A.
,
Kopperdahl
,
D. L.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
,
2003
, “
Finite Element Modeling of the Human Thoracolumbar Spine
,”
Spine
,
28
(
6
), pp.
559
565
.
19.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
20.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.
21.
Zhang
,
J.
,
Niebur
,
G. L.
, and
Ovaert
,
T. C.
,
2008
, “
Mechanical Property Determination of Bone Through Nano-and Micro-Indentation Testing and Finite Element Simulation
,”
J. Biomech.
,
41
(
2
), pp.
267
275
.
22.
Rouleau
,
L.
,
2013
, “
Modélisation Vibro-Acoustique De Structures Sandwich Munies De Matériaux Visco-Élastiques
,” Doctoral thesis, Conservatoire national des arts et metiers-CNAM, Paris, France.
23.
ISO,
2008
, “
Metallic Materials-Brinell Hardness Test—Part 1: Test Method
,” Polish Committee for Standardization, Warszawa, Poland, Standard No. 6506-1: 2008.
24.
Glantz
,
S. A.
,
2012
,
Primer of Biostatistics
,
McGraw-Hill Professional
, New York.
25.
Oh
,
K. W.
,
Lee
,
J. H.
,
Lee
,
J.-H.
,
Lee
,
D.-Y.
, and
Shim
,
H. J.
,
2017
, “
The Correlation Between Cage Subsidence, Bone Mineral Density, and Clinical Results in Posterior Lumbar Interbody Fusion
,”
Clin. Spine Surg.
,
30
(
6
), pp.
E683
E689
.
26.
Tempel
,
Z. J.
,
Gandhoke
,
G. S.
,
Okonkwo
,
D. O.
, and
Kanter
,
A. S.
2015
, “
Impaired Bone Mineral Density as a Predictor of Graft Subsidence Following Minimally Invasive Transpsoas Lateral Lumbar Interbody Fusion
,”
Eur. Spine J.
,
24
(
S3
), pp.
414
419
.
27.
Zhang
,
J. D.
, Poffyn, B., Sys, G., and Uyttendaele, D.,
2012
, “
Are Stand‐Alone Cages Sufficient for Anterior Lumbar Interbody Fusion?
,”
Orthop. Surg.
,
4
(
1
), pp.
11
14
.
28.
Oxland
,
T. R.
, Grant, J.P., Dvorak, M. F., and Fisher, C. G.,
2003
, “
Effects of Endplate Removal on the Structural Properties of the Lower Lumbar Vertebral Bodies
,”
Spine
,
28
(
8
), pp.
771
777
.
29.
Dall'Ara
,
E.
,
Pahr
,
D.
,
Varga
,
P.
,
Kainberger
,
F.
, and
Zysset
,
P.
,
2012
, “
QCT-Based Finite Element Models Predict Human Vertebral Strength In Vitro Significantly Better Than Simulated DEXA
,”
Osteoporosis Int.
,
23
(
2
), pp.
563
572
.
30.
Noshchenko
,
A.
,
Xianfeng
,
Y.
,
Armour
,
G. A.
,
Baldini
,
T.
,
Patel
,
V. V.
,
Ayers
,
R.
, and
Burger
,
E.
,
2011
, “
Evaluation of Spinal Instrumentation Rod Bending Characteristics for InSitu Contouring
,”
J. Biomed. Mater. Res. Part B
,
98
(
1
), pp.
192
200
.
31.
Supra Alloys,
2015
, “
Aerospace Materials Specifications for Titanium & Titanium Alloys
,” Supra Alloys, Camarillo, CA, accessed Oct. 31, 2017, http://www.supraalloys.com/specs.php
32.
Sen
,
I.
, and
Ramamurty
,
U.
,
2010
, “
Elastic Modulus of Ti–6Al–4V–xB Alloys With B up to 0.55 Wt.%
,”
Scr. Mater.
,
62
(
1
), pp.
37
40
.
33.
Rho
,
J.-Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
1997
, “
Elastic Properties of Human Cortical and Trabecular Lamellar Bone Measured by Nanoindentation
,”
Biomaterials
,
18
(
20
), pp.
1325
1330
.
34.
Zysset
,
P. K.
,
Guo
,
X. E.
,
Hoffler
,
C. E.
,
Moore
,
K. E.
, and
Goldstein
,
S. A.
,
1999
, “
Elastic Modulus and Hardness of Cortical and Trabecular Bone Lamellae Measured by Nanoindentation in the Human Femur
,”
J. Biomech.
,
32
(
10
), pp.
1005
1012
.
35.
Vadapalli
,
S.
, Sairyo, K., Goel, V. K., Robon, M., Biyani, A., Khandha, A., and Ebraheim, N. A.,
2006
, “
Biomechanical Rationale for Using Polyetheretherketone (PEEK) Spacers for Lumbar Interbody Fusion–a Finite Element Study
,”
Spine
,
31
(
26
), pp.
E992
E998
.
You do not currently have access to this content.