Calcific aortic valve disease (CAVD) is a progressive disease in which minerals accumulate in the tissue of the aortic valve cusps, stiffening them and preventing valve opening and closing. The process of valve calcification was found to be similar to that of bone formation including cell differentiation to osteoblast-like cells. Studies have shown the contribution of high strains to calcification initiation and growth process acceleration. In this paper, a new strain-based calcification growth model is proposed. The model aims to explain the unique shape of the calcification and other disease characteristics. The calcification process was divided into two stages: Calcification initiation and calcification growth. The initiation locations were based on previously published findings and a reverse calcification technique (RCT), which uses computed tomography (CT) scans of patients to reveal the calcification initiation point. The calcification growth process was simulated by a finite element model of one aortic valve cusp loaded with cyclic loading. Similar to Wolff's law, describing bone response to stress, our model uses strains to drive calcification formation. The simulation grows calcification from its initiation point to its full typical stenotic shape. Study results showed that the model was able to reproduce the typical calcification growth pattern and shape, suggesting that strain is the main driving force behind calcification progression. The simulation also sheds light on other disease characteristics, such as calcification growth acceleration as the disease progresses, as well as sensitivity to hypertension.

References

References
1.
Lindroos
,
M.
,
Kupari
,
M.
,
Heikkilä
,
J.
, and
Tilvis
,
R.
,
1993
, “
Prevalence of Aortic Valve Abnormalities in the Elderly: An Echocardiographic Study of a Random Population Sample
,”
J. Am. Coll. Cardiol.
,
21
(
5
), pp.
1220
1225
.
2.
Miller
,
J. D.
,
2013
, “
Cardiovascular Calcification: Orbicular Origins
,”
Nat. Mater.
,
12
(
6
), pp.
476
478
.
3.
Rajamannan
,
N. M.
,
Subramaniam
,
M.
,
Rickard
,
D.
,
Stock
,
S. R.
,
Donovan
,
J.
,
Springett
,
M.
,
Orszulak
,
T.
,
Fullerton
,
D. A.
,
Tajik
,
A. J.
,
Bonow
,
R. O.
, and
Spelsberg
,
T.
,
2003
, “
Human Aortic Valve Calcification Is Associated With an Osteoblast Phenotype
,”
Circulation
,
107
(
17
), pp.
2181
2184
.
4.
Alexopoulos
,
A.
,
Bravou
,
V.
,
Peroukides
,
S.
,
Kaklamanis
,
L.
,
Varakis
,
J.
,
Alexopoulos
,
D.
, and
Papadaki
,
H.
,
2010
, “
Bone Regulatory Factors NFATc1 and Osterix in Human Calcific Aortic Valves
,”
Int. J. Cardiol.
,
139
(
2
), pp.
142
149
.
5.
Weinberg
,
E. J.
,
Schoen
,
F. J.
, and
Mofrad
,
M. R. K.
,
2009
, “
A Computational Model of Aging and Calcification in the Aortic Heart Valve
,”
PLoS One
,
4
(
6
), pp.
1
10
.
6.
Freeman
,
R. V.
, and
Otto
,
C. M.
,
2005
, “
Spectrum of Calcific Aortic Valve Disease: Pathogenesis, Disease Progression, and Treatment Strategies
,”
Circulation
,
111
(
24
), pp.
3316
3326
.
7.
Otto
,
C. M.
,
2008
, “
Calcific Aortic Stenosis–Time to Look More Closely at the Valve
,”
N. Engl. J. Med.
,
359
(
13
), pp.
1395
1398
.
8.
Edwards
,
J. E.
,
1961
, “
The Congenital Bicuspid Aortic Valve
,”
Circulation
,
23
(
4
), pp.
485
488
.
9.
Vollebergh
,
F. E. M. G.
, and
Becker
,
A. E.
,
1977
, “
Minor Congenital Variations of Cusp Size in Tricuspid Aortic Valves Possible Link With Isolated Aortic Stenosis
,”
Br. Heart J.
,
39
(
9
), pp.
1006
1011
.
10.
Thubrikar
,
M. J.
,
Aouad
,
J.
, and
Nolan
,
S. P.
,
1986
, “
Patterns of Calcific Deposits in Operatively Excised Stenotic or Purely Regurgitant Aortic Valves and Their Relation to Mechanical Stress
,”
Am. J. Cardiol.
,
58
(
3
), pp.
304
308
.
11.
Robicsek
,
F.
,
Thubrikar
,
M. J.
,
Cook
,
J. W.
, and
Fowler
,
B.
,
2004
, “
The Congenitally Bicuspid Aortic Valve: How Does It Function? Why Does It Fail?
,”
Ann. Thorac. Surg.
,
77
(
1
), pp.
177
185
.
12.
Xing
,
Y.
,
Warnock
,
J. N.
,
He
,
Z.
,
Hilbert
,
S. L.
, and
Yoganathan
,
A. P.
,
2004
, “
Cyclic Pressure Affects the Biological Properties of Porcine Aortic Valve Leaflets in a Magnitude and Frequency Dependent Manner
,”
Ann. Biomed. Eng.
,
32
(
11
), pp.
1461
1470
.
13.
Sucosky
,
P.
,
Balachandran
,
K.
,
Elhammali
,
A.
,
Jo
,
H.
, and
Yoganathan
,
A. P.
,
2009
, “
Altered Shear Stress Stimulates Upregulation of Endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-β1-Dependent Pathway
,”
Arterioscler. Thromb. Vasc. Biol.
,
29
(
2
), pp.
254
260
.
14.
Smith
,
K. E.
,
Metzler
,
S. A.
, and
Warnock
,
J. N.
,
2010
, “
Cyclic Strain Inhibits Acute Pro-Inflammatory Gene Expression in Aortic Valve Interstitial Cells
,”
Biomech. Model. Mechanobiol.
,
9
(
1
), pp.
117
125
.
15.
Balachandran
,
K.
,
Sucosky
,
P.
,
Jo
,
H.
, and
Yoganathan
,
A. P.
,
2010
, “
Elevated Cyclic Stretch Induces Aortic Valve Calcification in a Bone Morphogenic Protein-Dependent Manner
,”
Am. J. Pathol.
,
177
(
1
), pp.
49
57
.
16.
Fisher
,
C. I.
,
Chen
,
J.
, and
Merryman
,
W. D.
,
2013
, “
Calcific Nodule Morphogenesis by Heart Valve Interstitial Cells is Strain Dependent
,”
Biomech. Model. Mechanobiol.
,
12
(
1
), pp.
5
17
.
17.
Halevi
,
R.
,
Hamdan
,
A.
,
Marom
,
G.
,
Mega
,
M.
,
Raanani
,
E.
, and
Haj-Ali
,
R.
,
2015
, “
Progressive Aortic Valve Calcification: Three-Dimensional Visualization and Biomechanical Analysis
,”
J. Biomech.
,
48
(
3
), pp.
489
497
.
18.
Mullender
,
M. G.
,
Huiskes
,
R.
, and
Weinans
,
H.
,
1994
, “
A Physiological Approach to the Simulation of Bone Remodeling as a Self-Organizational Control Process
,”
J. Biomech.
,
27
(
11
), pp.
1389
1394
.
19.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Slooff
,
T. J.
,
1987
, “
Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis
,”
J. Biomech.
,
20
(
11–12
), pp.
1135
1150
.
20.
Belinha
,
J.
,
Jorge
,
R. M. N.
, and
Dinis
,
L. M. J. S.
,
2013
, “
A Meshless Microscale Bone Tissue Trabecular Remodelling Analysis Considering a New Anisotropic Bone Tissue Material Law
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
11
), pp.
1170
1184
.
21.
Goodship
,
A. E.
,
1987
, “
The Law of Bone Remodelling
,”
J. Anat.
,
155
, p.
217
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1261897/
22.
Arzani
,
A.
,
Masters
,
K. S.
, and
Mofrad
,
M. R. K.
,
2017
, “
Multiscale Systems Biology Model of Calcific Aortic Valve Disease Progression
,”
ACS Biomater. Sci. Eng.
, 3(11), pp. 2922–2933.https://doi.org/10.1021/acsbiomaterials.7b00174
23.
Arzani
,
A.
, and
Mofrad
,
M. R. K.
,
2017
, “
A Strain-Based Finite Element Model for Calcification Progression in Aortic Valves
,”
J. Biomech.
,
65
, pp.
216
220
.
24.
Jonas
,
M.
,
Rozenman
,
Y.
,
Moshkovitz
,
Y.
,
Hamdan
,
A.
,
Kislev
,
Y.
,
Tirosh
,
N.
,
Sax
,
S.
,
Trumer
,
D.
,
Golan
,
E.
, and
Raanani
,
E.
,
2015
, “
The Leaflex Catheter System—A Viable Treatment Option Alongside Valve Replacement? Preclinical Feasibility of a Novel Device Designed for Fracturing Aortic Valve
,”
EuroIntervention
,
11
(
5
), pp.
582
590
.
25.
Marom
,
G.
,
Haj-Ali
,
R.
,
Raanani
,
E.
,
Schäfers
,
H.-J.
, and
Rosenfeld
,
M.
,
2012
, “
A Fluid-Structure Interaction Model of the Aortic Valve With Coaptation and Compliant Aortic Root
,”
Med. Biol. Eng. Comput.
,
50
(
2
), pp.
173
182
.
26.
Marom
,
G.
,
Peleg
,
M.
,
Halevi
,
R.
,
Rosenfeld
,
M.
,
Raanani
,
E.
,
Hamdan
,
A.
, and
Haj-Ali
,
R.
,
2013
, “
Fluid-Structure Interaction Model of Aortic Valve With Porcine-Specific Collagen Fiber Alignment in the Cusps
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101001
.
27.
Haj-Ali
,
R.
,
Marom
,
G.
,
Ben Zekry
,
S.
,
Rosenfeld
,
M.
, and
Raanani
,
E.
,
2012
, “
A General Three-Dimensional Parametric Geometry of the Native Aortic Valve and Root for Biomechanical Modeling
,”
J. Biomech.
,
45
(
14
), pp.
2392
2397
.
28.
Driessen
,
N. J.
,
Boerboom
,
R. A.
,
Huyghe
,
J. M.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
,
2003
, “
Computational Analyses of Mechanically Induced Collagen Fiber Remodeling in the Aortic Heart Valve
,”
ASME J. Biomech. Eng.
,
125
(
4
), pp.
549
557
.
29.
Halevi
,
R.
,
Hamdan
,
A.
,
Marom
,
G.
,
Lavon
,
K.
,
Ben-Zekry
,
S.
,
Raanani
,
E.
,
Bluestein
,
D.
, and
Haj-Ali
,
R.
,
2016
, “
Fluid–Structure Interaction Modeling of Calcific Aortic Valve Disease Using Patient-Specific Three-Dimensional Calcification Scans
,”
Med. Biol. Eng. Comput.
,
54
(
11
), pp.
1683
1694
.
30.
Otto
,
C. M.
,
Kuusisto
,
J.
,
Reichenbach
,
D. D.
,
Gown
,
A. M.
, and
O'Brien
,
K. D.
,
1994
, “
Characterization of the Early Lesion of ‘Degenerative’ Valvular Aortic Stenosis. Histological and Immunohistochemical Studies
,”
Circulation
,
90
(
2
), pp.
844
853
.
31.
Mega
,
M.
,
Marom
,
G.
,
Halevi
,
R.
,
Hamdan
,
A.
,
Bluestein
,
D.
, and
Haj-Ali
,
R.
,
2016
, “
Imaging Analysis of Collagen Fiber Networks in Cusps of Porcine Aortic Valves: Effect of Their Local Distribution and Alignment on Valve Functionality
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
9
), pp.
1002
1008
.
32.
Cataloglu
,
A.
,
Clark
,
R. E.
, and
Gould
,
P. L.
,
1977
, “
Stress Analysis of Aortic Valve Leaflets With Smoothed Geometrical Data
,”
J. Biomech.
,
10
(
3
), pp.
153
158
.
33.
Jenkins
,
W. S. A.
,
Vesey
,
A. T.
,
Shah
,
A. S. V.
,
Pawade
,
T. A.
,
Chin
,
C. W. L.
,
White
,
A. C.
,
Fletcher
,
A.
,
Cartlidge
,
T. R. G.
,
Mitchell
,
A. J.
,
Pringle
,
M. A. H.
,
Brown
,
O. S.
,
Pessotto
,
R.
,
McKillop
,
G.
,
Van Beek
,
E. J. R.
,
Boon
,
N. A.
,
Rudd
,
J. H. F.
,
Newby
,
D. E.
, and
Dweck
,
M. R.
,
2015
, “
Valvular 18F-Fluoride and 18F-Fluorodeoxyglucose Uptake Predict Disease Progression and Clinical Outcome in Patients With Aortic Stenosis
,”
J. Am. Coll. Cardiol.
,
66
(
10
), pp.
1200
1201
.
34.
Stewart
,
B. F.
,
Siscovick
,
D.
,
Lind
,
B. K.
,
Gardin
,
J. M.
,
Gottdiener
,
J. S.
,
Smith
,
V. E.
,
Kitzman
,
D. W.
, and
Otto
,
C. M.
,
1997
, “
Clinical Factors Associated With Calcific Aortic Valve Disease. Cardiovascular Health Study
,”
J. Am. Coll. Cardiol.
,
29
(
3
), pp.
630
634
.
35.
Bakhaty
,
A. A.
,
Govindjee
,
S.
, and
Mofrad
,
M. R. K.
,
2017
, “
Consistent Trilayer Biomechanical Modeling of Aortic Valve Leaflet Tissue
,”
J. Biomech.
,
61
, pp.
1
10
.
You do not currently have access to this content.