Paravalvular leak (PVL) is a relatively frequent complication after transcatheter aortic valve replacement (TAVR) with increased mortality. Currently, there is no effective method to pre-operatively predict and prevent PVL. In this study, we developed a computational model to predict the severity of PVL after TAVR. Nonlinear finite element (FE) method was used to simulate a self-expandable CoreValve deployment into a patient-specific aortic root, specified with human material properties of aortic tissues. Subsequently, computational fluid dynamics (CFD) simulations were performed using the post-TAVR geometries from the FE simulation, and a parametric investigation of the impact of the transcatheter aortic valve (TAV) skirt shape, TAV orientation, and deployment height on PVL was conducted. The predicted PVL was in good agreement with the echocardiography data. Due to the scallop shape of CoreValve skirt, the difference of PVL due to TAV orientation can be as large as 40%. Although the stent thickness is small compared to the aortic annulus size, we found that inappropriate modeling of it can lead to an underestimation of PVL up to 10 ml/beat. Moreover, the deployment height could significantly alter the extent and the distribution of regurgitant jets, which results in a change of leaking volume up to 70%. Further investigation in a large cohort of patients is warranted to verify the accuracy of our model. This study demonstrated that a rigorously developed patient-specific computational model can provide useful insights into underlying mechanisms causing PVL and potentially assist in pre-operative planning for TAVR to minimize PVL.

References

1.
Webb
,
J. G.
,
Chandavimol
,
M.
,
Thompson
,
C. R.
,
Ricci
,
D. R.
,
Carere
,
R. G.
,
Munt
,
B. I.
,
Buller
,
C. E.
,
Pasupati
,
S.
, and
Lichtenstein
,
S.
,
2006
, “
Percutaneous Aortic Valve Implantation Retrograde From the Femoral Artery
,”
Circulation
,
113
(
6
), pp.
842
850
.
2.
Leon
,
M. B.
,
Smith
,
C. R.
,
Mack
,
M.
,
Miller
,
D. C.
,
Moses
,
J. W.
,
Svensson
,
L. G.
,
Tuzcu
,
E. M.
,
Webb
,
J. G.
,
Fontana
,
G. P.
,
Makkar
,
R. R.
,
Brown
,
D. L.
,
Block
,
P. C.
,
Guyton
,
R. A.
,
Pichard
,
A. D.
,
Bavaria
,
J. E.
,
Herrmann
,
H. C.
,
Douglas
,
P. S.
,
Petersen
,
J. L.
,
Akin
,
J. J.
,
Anderson
,
W. N.
,
Wang
,
D.
,
Pocock
,
S.
, and
Investigators
,
P. T.
,
2010
, “
Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery
,”
N. Engl. J. Med.
,
363
(
17
), pp.
1597
1607
.
3.
Smith
,
C. R.
,
Leon
,
M. B.
,
Mack
,
M. J.
,
Miller
,
D. C.
,
Moses
,
J. W.
,
Svensson
,
L. G.
,
Tuzcu
,
E. M.
,
Webb
,
J. G.
,
Fontana
,
G. P.
,
Makkar
,
R. R.
,
Williams
,
M.
,
Dewey
,
T.
,
Kapadia
,
S.
,
Babaliaros
,
V.
,
Thourani
,
V. H.
,
Corso
,
P.
,
Pichard
,
A. D.
,
Bavaria
,
J. E.
,
Herrmann
,
H. C.
,
Akin
,
J. J.
,
Anderson
,
W. N.
,
Wang
,
D.
, and
Pocock
,
S. J.
,
2011
, “
Transcatheter Versus Surgical Aortic-Valve Replacement in High-Risk Patients
,”
N. Engl. J. Med.
,
364
(
23
), pp.
2187
2198
.
4.
Cribier
,
A.
,
2017
, “
The Development of Transcatheter Aortic Valve Replacement (TAVR)
,”
Global Cardiol. Sci. Pract.
,
2016
(
4
), p.
e201632
.
5.
Thyregod
,
H. G. H.
,
Steinbrüchel
,
D. A.
,
Ihlemann
,
N.
,
Nissen
,
H.
,
Kjeldsen
,
B. J.
,
Petursson
,
P.
,
Chang
,
Y.
,
Franzen
,
O. W.
,
Engstrøm
,
T.
, and
Clemmensen
,
P.
,
2015
, “
Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Severe Aortic Valve Stenosis: 1-Year Results From the All-Comers NOTION Randomized Clinical Trial
,”
J. Am. Coll. Cardiol.
,
65
(
20
), pp.
2184
2194
.
6.
Généreux
,
P.
,
Head
,
S. J.
,
Hahn
,
R.
,
Daneault
,
B.
,
Kodali
,
S.
,
Williams
,
M. R.
,
van Mieghem
,
N. M.
,
Alu
,
M. C.
,
Serruys
,
P. W.
,
Kappetein
,
A. P.
, and
Leon
,
M. B.
,
2013
, “
Paravalvular Leak After Transcatheter Aortic Valve Replacement: The New Achilles' Heel? A Comprehensive Review Literature
,”
J. Am. Coll. Cardiol.
,
61
(
11
), pp.
1125
1136
.
7.
Leon
,
M. B.
,
Smith
,
C. R.
,
Mack
,
M. J.
,
Makkar
,
R. R.
,
Svensson
,
L. G.
,
Kodali
,
S. K.
,
Thourani
,
V. H.
,
Tuzcu
,
E. M.
,
Miller
,
D. C.
,
Herrmann
,
H. C.
,
Doshi
,
D.
,
Cohen
,
D. J.
,
Pichard
,
A. D.
,
Kapadia
,
S.
,
Dewey
,
T.
,
Babaliaros
,
V.
,
Szeto
,
W. Y.
,
Williams
,
M. R.
,
Kereiakes
,
D.
,
Zajarias
,
A.
,
Greason
,
K. L.
,
Whisenant
,
B. K.
,
Hodson
,
R. W.
,
Moses
,
J. W.
,
Trento
,
A.
,
Brown
,
D. L.
,
Fearon
,
W. F.
,
Pibarot
,
P.
,
Hahn
,
R. T.
,
Jaber
,
W. A.
,
Anderson
,
W. N.
,
Alu
,
M. C.
,
Webb
,
J. G.
, and
Investigators
,
P.
,
2016
, “
Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients
,”
N. Engl. J. Med.
,
374
(
17
), pp.
1609
1620
.
8.
Kodali
,
S. K.
,
Williams
,
M. R.
,
Smith
,
C. R.
,
Svensson
,
L. G.
,
Webb
,
J. G.
,
Makkar
,
R. R.
,
Fontana
,
G. P.
,
Dewey
,
T. M.
,
Thourani
,
V. H.
,
Pichard
,
A. D.
,
Fischbein
,
M.
,
Szeto
,
W. Y.
,
Lim
,
S.
,
Greason
,
K. L.
,
Teirstein
,
P. S.
,
Malaisrie
,
S. C.
,
Douglas
,
P. S.
,
Hahn
,
R. T.
,
Whisenant
,
B.
,
Zajarias
,
A.
,
Wang
,
D.
,
Akin
,
J. J.
,
Anderson
,
W. N.
, and
Leon
,
M. B.
,
2012
, “
Two-Year Outcomes After Transcatheter or Surgical Aortic-Valve Replacement
,”
N. Engl. J. Med.
,
366
(
18
), pp.
1686
1695
.
9.
Leon
,
M. B.
,
Gada
,
H.
, and
Fontana
,
G. P.
,
2014
, “
Challenges and Future Opportunities for Transcatheter Aortic Valve Therapy
,”
Prog. Cardiovasc. Dis.
,
56
(
6
), pp.
635
645
.
10.
Salaun
,
E.
,
Jacquier
,
A.
,
Theron
,
A.
,
Giorgi
,
R.
,
Lambert
,
M.
,
Jaussaud
,
N.
,
Hubert
,
S.
,
Collart
,
F.
,
Bonnet
,
J.
, and
Habib
,
G.
,
2015
, “
Value of CMR in Quantification of Paravalvular Aortic Regurgitation After TAVI
,”
Eur. Heart J. Cardiovasc. Imaging
,
17
(1), pp. 41–50.
11.
Sakrana
,
A.
,
Nasr
,
M.
,
Ashamallah
,
G.
,
Abuelatta
,
R.
,
Naeim
,
H.
, and
Tahlawi
,
M.
,
2016
, “
Paravalvular Leak After Transcatheter Aortic Valve Implantation: Is It Anatomically Predictable or Procedurally Determined? MDCT Study
,”
Clin. Radiol.
,
71
(
11
), pp.
1095
1103
.
12.
Kappetein
,
A. P.
,
Head
,
S. J.
,
Généreux
,
P.
,
Piazza
,
N.
,
Van Mieghem
,
N. M.
,
Blackstone
,
E. H.
,
Brott
,
T. G.
,
Cohen
,
D. J.
,
Cutlip
,
D. E.
, and
van Es
,
G.-A.
,
2012
, “
Updated Standardized Endpoint Definitions for Transcatheter Aortic Valve Implantation: The Valve Academic Research Consortium-2 Consensus Document
,”
J. Am. Coll. Cardiol.
,
60
(
15
), pp.
1438
1454
.
13.
Geleijnse
,
M. L.
,
Di Martino
,
L. F.
,
Vletter
,
W. B.
,
Ren
,
B.
,
Galema
,
T. W.
,
Van Mieghem
,
N. M.
,
de Jaegere
,
P. P.
, and
Soliman
,
O. I.
,
2016
, “
Limitations and Difficulties of Echocardiographic Short-Axis Assessment of Paravalvular Leakage After Corevalve Transcatheter Aortic Valve Implantation
,”
Cardiovasc. Ultrasound
,
14
(
1
), p.
37
.
14.
Pibarot
,
P.
,
Hahn
,
R. T.
,
Weissman
,
N. J.
, and
Monaghan
,
M. J.
,
2015
, “
Assessment of Paravalvular Regurgitation Following TAVR: A Proposal of Unifying Grading Scheme
,”
JACC: Cardiovasc. Imaging
,
8
(
3
), pp.
340
360
.
15.
Auricchio
,
F.
,
Conti
,
M.
,
Morganti
,
S.
, and
Reali
,
A.
,
2013
, “
Simulation of Transcatheter Aortic Valve Implantation: A Patient-Specific Finite Element Approach
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
12
), pp.
1347
1357
.
16.
Capelli
,
C.
,
Bosi
,
G. M.
,
Cerri
,
E.
,
Nordmeyer
,
J.
,
Odenwald
,
T.
,
Bonhoeffer
,
P.
,
Migliavacca
,
F.
,
Taylor
,
A. M.
, and
Schievano
,
S.
,
2012
, “
Patient-Specific Simulations of Transcatheter Aortic Valve Stent Implantation
,”
Med. Biol. Eng. Comput.
,
50
(
2
), pp.
183
192
.
17.
Gunning
,
P. S.
,
Vaughan
,
T. J.
, and
McNamara
,
L. M.
,
2014
, “
Simulation of Self Expanding Transcatheter Aortic Valve in a Realistic Aortic Root: Implications of Deployment Geometry on Leaflet Deformation
,”
Ann. Biomed. Eng.
,
42
(
9
), pp.
1989
2001
.
18.
Russ
,
C.
,
Hopf
,
R.
,
Hirsch
,
S.
,
Sundermann
,
S.
,
Falk
,
V.
,
Szekely
,
G.
, and
Gessat
,
M.
,
2013
, “
Simulation of Transcatheter Aortic Valve Implantation Under Consideration of Leaflet Calcification
,”
35th Annual International Conference of the Engineering in Medicine and Biology Society
(EMBC)
, Osaka, Japan, July 3–7, pp.
711
714
.
19.
Wang
,
Q.
,
Sirois
,
E.
, and
Sun
,
W.
,
2012
, “
Patient-Specific Modeling of Biomechanical Interaction in Transcatheter Aortic Valve Deployment
,”
J. Biomech.
,
45
(
11
), pp.
1965
1971
.
20.
de Jaegere
,
P.
,
De Santis
,
G.
,
Rodriguez-Olivares
,
R.
,
Bosmans
,
J.
,
Bruining
,
N.
,
Dezutter
,
T.
,
Rahhab
,
Z.
,
El Faquir
,
N.
,
Collas
,
V.
, and
Bosmans
,
B.
,
2016
, “
Patient-Specific Computer Modeling to Predict Aortic Regurgitation After Transcatheter Aortic Valve Replacement
,”
JACC: Cardiovasc. Interventions
,
9
(
5
), pp.
508
512
.
21.
El Faquir
,
N.
,
Ren
,
B.
,
Van Mieghem
,
N.
,
Bosmans
,
J.
, and
de Jaegere
,
P.
,
2017
, “
Patient-Specific Computer Modelling–Its Role in the Planning of Transcatheter Aortic Valve Implantation
,”
Netherlands Heart J.
,
25
(
2
), pp.
100
105
.
22.
Saeedi
,
A.
,
2015
, “
Energetic and Hemodynamic Characteristics of Paravalvular Leak Following Transcatheter Aortic Valve Replacement
,”
Masters thesis
,
Concordia University
, Montreal, QC, Canada.https://spectrum.library.concordia.ca/980160/1/Saeedi-%20MASc-F2015.pdf
23.
Bosmans
,
B.
,
Famaey
,
N.
,
Verhoelst
,
E.
,
Bosmans
,
J.
, and
Vander Sloten
,
J.
,
2016
, “
A Validated Methodology for Patient Specific Computational Modeling of Self-Expandable Transcatheter Aortic Valve Implantation
,”
J. Biomech.
,
49
(
13
), pp.
2824
2830
.
24.
Gessat
,
M.
,
Altwegg
,
L.
,
Frauenfelder
,
T.
,
Plass
,
A.
, and
Falk
,
V.
,
2011
, “
Cubic Hermite Bezier Spline Based Reconstruction of Implanted Aortic Valve Stents From CT Images
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Boston, MA, Aug. 30–Sept. 3, pp.
2667
2670
.
25.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.
26.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.
27.
Liu
,
H.
, and
Sun
,
W.
,
2017
, “
Numerical Approximation of Elasticity Tensor Associated With Green-Naghdi Rate
,”
ASME J. Biomech. Eng.
,
139
(
8
), p.
081007
.
28.
Liu
,
H.
, and
Sun
,
W.
,
2016
, “
Computational Efficiency of Numerical Approximations of Tangent Moduli for Finite Element Implementation of a Fiber-Reinforced Hyperelastic Material Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
11
), pp.
1171
1180
.
29.
Sun
,
W.
,
Chaikof
,
E. L.
, and
Levenston
,
M. E.
,
2008
, “
Numerical Approximation of Tangent Moduli for Finite Element Implementations of Nonlinear Hyperelastic Material Models
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061003
.
30.
Ogden
,
R.
,
1972
, “
Large Deformation Isotropic Elasticity-on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci., R. Soc.
,
326
(
1567
), pp.
565
584
.
31.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
,
2004
, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
ASME J. Biomech. Eng.
,
126
(
5
), pp.
657
665
.
32.
Wang
,
Q.
,
Kodali
,
S.
,
Primiano
,
C.
, and
Sun
,
W.
,
2015
, “
Simulations of Transcatheter Aortic Valve Implantation: Implications for Aortic Root Rupture
,”
Biomech. Modeling Mechanobiol.
,
14
(
1
), pp.
29
38
.
33.
Martin
,
C.
,
Pham
,
T.
, and
Sun
,
W.
,
2011
, “
Significant Differences in the Material Properties Between Aged Human and Porcine Aortic Tissues
,”
Eur. J. Cardio-Thorac. Surg.
,
40
(
1
), pp.
28
34
.
34.
Tzamtzis
,
S.
,
Viquerat
,
J.
,
Yap
,
J.
,
Mullen
,
M.
, and
Burriesci
,
G.
,
2013
, “
Numerical Analysis of the Radial Force Produced by the Medtronic-CoreValve and Edwards-SAPIEN after Transcatheter Aortic Valve Implantation (TAVI)
,”
Med. Eng. Phys.
,
35
(
1
), pp.
125
130
.
35.
Mummert
,
J.
,
Sirois
,
E.
, and
Sun
,
W.
,
2013
, “
Quantification of Biomechanical Interaction of Transcatheter Aortic Valve Stent Deployed in Porcine and Ovine Hearts
,”
Ann. Biomed. Eng.
,
41
(
3
), pp.
577
586
.
36.
Schultz
,
C. J.
,
Weustink
,
A.
,
Piazza
,
N.
,
Otten
,
A.
,
Mollet
,
N.
,
Krestin
,
G.
,
van Geuns
,
R. J.
,
de Feyter
,
P.
,
Serruys
,
P. W.
, and
de Jaegere
,
P.
,
2009
, “
Geometry and Degree of Apposition of the CoreValve ReValving System With Multislice Computed Tomography After Implantation in Patients With Aortic Stenosis
,”
J. Am. Coll. Cardiol.
,
54
(
10
), pp.
911
918
.
37.
CD-Adapco
,
2015
, “
STAR-CCM+ User Guide, Version 10.02
,” CD-adapco, Melville, NY.
38.
Wood
,
N.
,
1999
, “
Aspects of Fluid Dynamics Applied to the Larger Arteries
,”
J. Theor. Biol.
,
199
(
2
), pp.
137
161
.
39.
Calderan
,
J.
,
Mao
,
W.
,
Sirois
,
E.
, and
Sun
,
W.
,
2016
, “
Development of an In Vivo Model to Characterize the Effects of Transcatheter Aortic Valve on Coronary Artery Flow
,”
Artif. Organs
,
40
(
6
), pp.
612
619
.
40.
Grube
,
E.
,
Laborde
,
J. C.
,
Gerckens
,
U.
,
Felderhoff
,
T.
,
Sauren
,
B.
,
Buellesfeld
,
L.
,
Mueller
,
R.
,
Menichelli
,
M.
,
Schmidt
,
T.
, and
Zickmann
,
B.
,
2006
, “
Percutaneous Implantation of the CoreValve Self-Expanding Valve Prosthesis in High-Risk Patients With Aortic Valve Disease
,”
Circulation
,
114
(
15
), pp.
1616
1624
.
41.
Geven
,
M. C.
,
Bohté
,
V. N.
,
Aarnoudse
,
W. H.
,
van den Berg
,
P. M.
,
Rutten
,
M. C.
,
Pijls
,
N. H.
, and
van de Vosse
,
F. N.
,
2004
, “
A Physiologically Representative In Vitro Model of the Coronary Circulation
,”
Physiol. Meas.
,
25
(
4
), p.
891
.
42.
Gaillard
,
E.
,
Garcia
,
D.
,
Kadem
,
L.
,
Pibarot
,
P.
, and
Durand
,
L.-G.
,
2010
, “
In Vitro Investigation of the Impact of Aortic Valve Stenosis Severity on Left Coronary Artery Flow
,”
ASME J. Biomech. Eng.
,
132
(
4
), p.
044502
.
43.
Lancellotti
,
P.
,
Tribouilloy
,
C.
,
Hagendorff
,
A.
,
Moura
,
L.
,
Popescu
,
B. A.
,
Agricola
,
E.
,
Monin
,
J.-L.
,
Pierard
,
L. A.
,
Badano
,
L.
, and
Zamorano
,
J. L.
,
2010
, “
European Association of Echocardiography Recommendations for the Assessment of Valvular Regurgitation—Part 1: Aortic and Pulmonary Regurgitation (Native Valve Disease)
,”
Eur. J. Echocardiography
,
11
(
3
), pp.
223
244
.
44.
Enriquez-Sarano
,
M.
,
Seward
,
J. B.
,
Bailey
,
K. R.
, and
Tajik
,
A. J.
,
1994
, “
Effective Regurgitant Orifice Area: A Noninvasive Doppler Development of an Old Hemodynamic Concept
,”
J. Am. Coll. Cardiol.
,
23
(
2
), pp.
443
451
.
45.
Ewe
,
S. H.
,
Ng
,
A. C.
,
Schuijf
,
J. D.
,
van der Kley
,
F.
,
Colli
,
A.
,
Palmen
,
M.
,
de Weger
,
A.
,
Marsan
,
N. A.
,
Holman
,
E. R.
, and
de Roos
,
A.
,
2011
, “
Location and Severity of Aortic Valve Calcium and Implications for Aortic Regurgitation After Transcatheter Aortic Valve Implantation
,”
Am. J. Cardiol.
,
108
(
10
), pp.
1470
1477
.
46.
Koos
,
R.
,
Mahnken
,
A. H.
,
Dohmen
,
G.
,
Brehmer
,
K.
,
Günther
,
R. W.
,
Autschbach
,
R.
,
Marx
,
N.
, and
Hoffmann
,
R.
,
2011
, “
Association of Aortic Valve Calcification Severity With the Degree of Aortic Regurgitation After Transcatheter Aortic Valve Implantation
,”
Int. J. Cardiol.
,
150
(
2
), pp.
142
145
.
47.
Mihara
,
H.
,
Shibayama
,
K.
,
Berdejo
,
J.
,
Harada
,
K.
,
Itabashi
,
Y.
,
Siegel
,
R. J.
,
Kashif
,
M.
,
Jilaihawi
,
H.
,
Makkar
,
R. R.
, and
Shiota
,
T.
,
2015
, “
Impact of Device Landing Zone Calcification on Paravalvular Regurgitation After Transcatheter Aortic Valve Replacement: A Real-Time Three-Dimensional Transesophageal Echocardiographic Study
,”
J. Am. Soc. Echocardiography
,
28
(
4
), pp.
404
414
.
48.
Marwan
,
M.
,
Achenbach
,
S.
,
Ensminger
,
S. M.
,
Pflederer
,
T.
,
Ropers
,
D.
,
Ludwig
,
J.
,
Weyand
,
M.
,
Daniel
,
W. G.
, and
Arnold
,
M.
,
2013
, “
CT Predictors of Post-Procedural Aortic Regurgitation in Patients Referred for Transcatheter Aortic Valve Implantation: An Analysis of 105 Patients
,”
Int. J. Cardiovasc. Imaging
,
29
(
5
), pp.
1191
1198
.
49.
Sun
,
W.
,
Li
,
K.
, and
Sirois
,
E.
,
2010
, “
Simulated Elliptical Bioprosthetic Valve Deformation: Implications for Asymmetric Transcatheter Valve Deployment
,”
J. Biomech.
,
43
(
16
), pp.
3085
3090
.
50.
Sinning
,
J.-M.
,
Werner
,
N.
,
Nickenig
,
G.
, and
Grube
,
E.
,
2013
, “
Medtronic CoreValve Evolut R with EnVeo R
,”
EuroIntervention
,
9
, pp.
S95
S96
.
51.
Binder
,
R. K.
,
Rodés-Cabau
,
J.
,
Wood
,
D. A.
,
Mok
,
M.
,
Leipsic
,
J.
,
De Larochellière
,
R.
,
Toggweiler
,
S.
,
Dumont
,
E.
,
Freeman
,
M.
, and
Willson
,
A. B.
,
2013
, “
Transcatheter Aortic Valve Replacement With the SAPIEN 3: A New Balloon-Expandable Transcatheter Heart Valve
,”
JACC: Cardiovasc. Interventions
,
6
(
3
), pp.
293
300
.
52.
Schymik
,
G.
,
Schröfel
,
H.
,
Heimeshoff
,
M.
,
Luik
,
A.
,
Thoenes
,
M.
, and
Mandinov
,
L.
,
2015
, “
How to Adapt the Implantation Technique for the New SAPIEN 3 Transcatheter Heart Valve Design
,”
J. Interventional Cardiol.
,
28
(
1
), pp.
82
89
.
53.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
,
Wiley
,
Hoboken, NJ
.
54.
Murdock
,
K.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
Characterization of Mechanical Properties of Pericardium Tissue Using Planar Biaxial Tension and Flexural Deformation
,”
J. Mechanical Behavior Biomedical Materials
,
77
, pp.
148
156
.
55.
Sotiropoulos
,
F.
,
Le
,
T. B.
, and
Gilmanov
,
A.
,
2016
, “
Fluid Mechanics of Heart Valves and Their Replacements
,”
Annu. Rev. Fluid Mech.
,
48
, pp.
259
283
.
56.
Yilmaz
,
F.
, and
Gundogdu
,
M. Y.
,
2008
, “
A Critical Review on Blood Flow in Large Arteries; Relevance to Blood Rheology, Viscosity Models, and Physiologic Conditions
,”
Korea-Australia Rheol. J.
,
20
(
4
), pp.
197
211
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.7926&rep=rep1&type=pdf
You do not currently have access to this content.