Kinetics assessment of the human head-arms-trunk (HAT) complex via a multisegment model is a useful tool for objective clinical evaluation of several pathological conditions. Inaccuracies in body segment parameters (BSPs) are a major source of uncertainty in the estimation of the joint moments associated with the multisegment HAT. Given the large intersubject variability, there is currently no comprehensive database for the estimation of BSPs for the HAT. We propose a nonlinear, multistep, optimization-based, noninvasive method for estimating individual-specific BSPs and calculating joint moments in a multisegment HAT model. Eleven nondisabled individuals participated in a trunk-bending experiment and their body motion was recorded using cameras and a force plate. A seven-segment model of the HAT was reconstructed for each participant. An initial guess of the BSPs was obtained by individual-specific scaling of the BSPs calculated from the male visible human (MVH) images. The intersegmental moments were calculated using both bottom-up and top-down inverse dynamics approaches. Our proposed method adjusted the scaled BSPs and center of pressure (COP) offsets to estimate optimal individual-specific BSPs that minimize the difference between the moments obtained by top-down and bottom-up inverse dynamics approaches. Our results indicate that the proposed method reduced the error in the net joint moment estimation (defined as the difference between the net joint moment calculated via bottom-up and top-down approaches) by 79.3% (median among participants). Our proposed method enables an optimized estimation of individual-specific BSPs and, consequently, a less erroneous assessment of the three-dimensional (3D) kinetics of a multisegment HAT model.

References

References
1.
Lund
,
T.
,
Nydegger
,
T.
,
Schlenzka
,
D.
, and
Oxland
,
T. R.
,
2002
, “
Three-Dimensional Motion Patterns During Active Bending in Patients With Chronic Low Back Pain
,”
Spine
,
27
(
17
), pp.
1865
1874
.
2.
Nishida
,
M.
,
Nagura
,
T.
,
Fujita
,
N.
,
Hosogane
,
N.
,
Tsuji
,
T.
,
Nakamura
,
M.
,
Matsumoto
,
M.
, and
Watanabe
,
K.
,
2017
, “
Position of the Major Curve Influences Asymmetrical Trunk Kinematics During Gait in Adolescent Idiopathic Scoliosis
,”
Gait Posture
,
51
, pp.
142
148
.
3.
Lalumiere
,
M.
,
Gagnon
,
D. H.
,
Routhier
,
F.
,
Bouyer
,
L.
, and
Desroches
,
G.
,
2014
, “
Upper Extremity Kinematics and Kinetics During the Performance of a Stationary Wheelie in Manual Wheelchair Users With a Spinal Cord Injury
,”
J. Appl. Biomech.
,
30
(
4
), pp.
574
580
.
4.
Konz
,
R. J.
,
Fatone
,
S.
,
Stine
,
R. L.
,
Ganju
,
A.
,
Gard
,
S. A.
, and
Ondra
,
S. L.
,
2006
, “
A Kinematic Model to Assess Spinal Motion During Walking
,”
Spine
,
31
(
24
), pp.
898
906
.
5.
Schmid
,
S.
,
Bruhin
,
B.
,
Ignasiak
,
D.
,
Romkes
,
J.
,
Taylor
,
W. R.
,
Ferguson
,
S. J.
,
Brunner
,
R.
, and
Lorenzetti
,
S.
,
2017
, “
Spinal Kinematics During Gait in Healthy Individuals Across Different Age Groups
,”
Hum. Mov. Sci.
,
54
, pp.
73
81
.
6.
Leardini
,
A.
,
Biagi
,
F.
,
Merlo
,
A.
,
Belvedere
,
C.
, and
Bendetti
,
M. G.
,
2011
, “
Multi-Segment Trunk Kinematics During Locomotion and Elementary Exercises
,”
Clin. Biomech.
,
26
(
6
), pp.
562
571
.
7.
Vette
,
A. H.
,
Yoshida
,
T.
,
Thrasher
,
T. A.
,
Masani
,
K.
, and
Popovic
,
M. R.
,
2012
, “
A Comprehensive Three-Dimensional Dynamic Model of the Human Head and Trunk for Estimating Lumbar and Cervical Joint Torques and Forces From Upper Body Kinematics
,”
Med. Eng. Phys.
,
34
(
5
), pp.
640
649
.
8.
Barbado
,
D.
,
Moreside
,
J.
, and
Vera-garcia
,
F. J.
,
2017
, “
Reliability and Repetition Effect of the Center of Pressure and Kinematics Parameters That Characterize Trunk Postural Control During Unstable Sitting Test
,”
PMR
,
9
(
3
), pp.
219
230
.
9.
Preuss
,
R. A.
, and
Popovic
,
M. R.
,
2010
, “
Three-Dimensional Spine Kinematics During Multidirectional, Target-Directed Trunk Movement in Sitting
,”
J. Electromyogr. Kinesiol.
,
20
(
5
), pp.
823
832
.
10.
Christian
,
L.
, and
Denis
,
G.
,
1998
, “
A Comparison Between Two Dynamic Methods to Estimate Triaxial Net Reaction Moments at the L5/S1 Joint During Lifting
,”
Clin. Biomech.
,
13
(
1
), pp.
36
47
.
11.
Riemer
,
R.
, and
Hsiao-Wecksler
,
E. T.
,
2009
, “
Improving Net Joint Torque Calculations Through a Two-Step Optimization Method for Estimating Body Segment Parameters
,”
ASME J. Biomech. Eng.
,
131
(
1
), p.
11007
.
12.
Riemer
,
R.
,
Hsiao-Wecksler
,
E. T.
, and
Zhang
,
X.
,
2008
, “
Uncertainties in Inverse Dynamics Solutions: A Comprehensive Analysis and an Application to Gait
,”
Gait Posture
,
27
(
4
), pp.
578
588
.
13.
Pearsal
,
D. J.
,
Reid
,
J. G.
, and
Rosst
,
R.
,
1994
, “
Inertial Properties of the Human Trunk of Males Determined From Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
22
(
6
), pp.
692
706
.
14.
Leva
,
P. De
,
1996
, “
Adjusments to Zatiorsky-Seluyanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.
15.
Bruno
,
A. G.
,
Mokhtarzadeh
,
H.
,
Allaire
,
B. T.
,
Velie
,
K. R.
,
De Paolis Kaluza
,
M. C.
,
Anderson
,
D. E.
, and
Bouxsein
,
M. L.
,
2017
, “
Incorporation of CT-Based Measurements of Trunk Anatomy Into Subject-Specific Musculoskeletal Models of the Spine Influences Vertebral Loading Predictions
,”
J. Orthop. Res.
,
35
(
10
), pp.
2164
2173
.
16.
Durkin
,
J. L.
, and
Dowling
,
J. J.
,
2003
, “
Analysis of Body Segment Parameter Differences Between Four Human Populations and the Estimation Errors of Four Popular Mathematical Models
,”
ASME J. Biomech. Eng.
,
125
(
4
), pp.
515
522
.
17.
Hinrichs
,
R. N.
,
1985
, “
Regression Equations to Predict Segmental Moments Inertia From Anthropometric Measurements: Extension of the Data of Chandler et al. (1975)
,”
J. Biomech.
,
18
(
8
), pp.
621
624
.
18.
Chen
,
S.
,
Hsieh
,
H.
,
Lu
,
T.
, and
Tseng
,
C.
,
2011
, “
A Method for Estimating Subject-Specific Body Segment Inertial Parameters in Human Movement Analysis
,”
Gait Posture
,
33
(
4
), pp.
695
700
.
19.
Pataky
,
T. C.
,
Zatsiorsky
,
V. M.
, and
Challis
,
J. H.
,
2003
, “
A Simple Method to Determine Body Segment Masses In Vivo: Reliability, Accuracy and Sensitivity Analysis
,”
Clin. Biomech.
,
18
(
4
), pp.
364
368
.
20.
Dumas
,
R.
,
Nicol
,
E.
, and
Chèze
,
L.
,
2007
, “
Influence of the 3D Inverse Dynamic Method on the Joint Forces and Moments During Gait
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
786
790
.
21.
Schache
,
A. G.
, and
Baker
,
R.
,
2007
, “
On the Expression of Joint Moments During Gait
,”
Gait Posture
,
25
(
3
), pp.
440
452
.
22.
Holden
,
J. P.
, and
Stanhope
,
S. J.
,
1998
, “
The Effect of Variation in Knee Center Location Estimates on Net Knee Joint Moments
,”
Gait Posture
,
7
(
1
), pp.
1
6
.
23.
Kingma
,
I.
,
De Looze
,
M. P.
,
Toussaint
,
H. M.
,
Klijnsma
,
H. G.
, and
Bruijnen
,
T. B. M.
,
1996
, “
Validation of a Full Body 3-D Dynamic Linked Segment Model
,”
Hum. Mov. Sci.
,
15
(
6
), pp.
833
860
.
24.
Plamondon
,
A.
,
Gagnon
,
M.
, and
Desjardins
,
P.
,
1996
, “
Validation of Two 3-D Segment Models to Calculate the Net Reaction Forces and Moments at the L5/S1 Joint in Lifting
,”
Clin. Biomech.
,
11
(
2
), pp.
101
110
.
25.
Larivière
,
C.
,
Gagnon
,
D.
, and
Loisel
,
P.
,
2002
, “
A Biomechanical Comparison of Lifting Techniques Between Subjects With and Without Chronic Low Back Pain During Freestyle Lifting and Lowering Tasks
,”
Clin. Biomech.
,
17
(
2
), pp.
89
98
.
26.
Hendershot
,
B. D.
, and
Wolf
,
E. J.
,
2014
, “
Three-Dimensional Joint Reaction Forces and Moments at the Low Back During Over-Ground Walking in Persons With Unilateral Lower-Extremity Amputation
,”
Clin. Biomech.
,
29
(
3
), pp.
235
242
.
27.
Desjardins
,
P.
,
Plamondon
,
A.
, and
Gagnon
,
M.
,
1998
, “
Sensitivity Analysis of Segment Models to Estimate the Net Reaction Moments at the L5/S1 Joint in Lifting
,”
Med. Eng. Phys.
,
20
(
2
), pp.
153
158
.
28.
Robert
,
T.
,
Chèze
,
L.
,
Dumas
,
R.
, and
Verriest
,
J. P.
,
2007
, “
Validation of Net joint loads Calculated by Inverse Dynamics in Case of Complex Movements: Application to Balance Recovery Movements
,”
J. Biomech.
,
40
(
11
), pp.
2450
2456
.
29.
Vaughan
,
C. L.
,
Andrews
,
J. G.
, and
Hay
,
J. G.
,
1982
, “
Selection of Body Segment Parameters by Optimization Methods
,”
ASME J. Biomech. Eng.
,
104
(
1
), pp.
38
44
.
30.
Kuo
,
A. D.
,
1998
, “
A Least-Squares Estimation Approach to Improving the Precision of Inverse Dynamics Computations
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
149
159
.
31.
Cahouet
,
V.
,
Luc
,
M.
, and
David
,
A.
,
2002
, “
Static Optimal Estimation of Joint Accelerations for Inverse Dynamics Problem Solution
,”
J. Biomech
,
35
(
11
), pp.
1507
1513
.
32.
Cappozzo
,
A.
,
2002
, “
Minimum Measured-Input Models for the Assessment of Motor Ability
,”
J. Biomech
,
35
(
4
), pp.
437
446
.
33.
Mazzà
,
C.
, and
Cappozzo
,
A.
,
2004
, “
An Optimization Algorithm for Human Joint Angle Time-History Generation Using External Force Data
,”
Ann. Biomed. Eng.
,
32
(
5
), pp.
764
772
.
34.
Riemer
,
R.
, and
Hsiao-Wecksler
,
E. T.
,
2008
, “
Improving Joint Torque Calculations: Optimization-Based Inverse Dynamics to Reduce the Effect of Motion Errors
,”
J. Biomech.
,
41
(
7
), pp.
1503
1509
.
35.
Spitzer
,
V.
,
Ackerman
,
M. J.
,
Scherzinger
,
A. L.
, and
Whitlock
,
D.
,
1996
, “
The Visible Human Male: A Technical Report
,”
J. Am. Med. Inf. Assoc.
,
3
(
2
), pp.
118
130
.
36.
Vette
,
A. H.
,
Yoshida
,
T.
,
Thrasher
,
T. A.
,
Masani
,
K.
, and
Popovic
,
M. R.
,
2011
, “
A Complete, Non-Lumped, and Verifiable Set of Upper Body Segment Parameters for Three-Dimensional Dynamic Modeling
,”
Med. Eng. Phys.
,
33
(
1
), pp.
70
79
.
37.
Steven
,
T.
, and
McCaw
,
P. D.
,
1995
, “
Errors in Alignment of Center of Pressure and Foot Coordinates Affect Predicted Lower Extremity Torques
,”
J. Biomech.
,
28
(
8
), pp.
985
988
.
38.
Mahallati
,
S.
,
Rouhani
,
H.
,
Preuss
,
R.
,
Masani
,
K.
, and
Popovic
,
M. R.
,
2016
, “
Multisegment Kinematics of the Spinal Column: Soft Tissue Artifacts Assessment
,”
ASME J. Biomech. Eng.
,
138
(
7
), p.
071003
.
39.
Rouhani
,
H.
,
Mahallati
,
S.
,
Preuss
,
R.
,
Masani
,
K.
, and
Popovic
,
M. R.
,
2015
, “
Sensitivity of Intersegmental Angles of the Spinal Column to Errors Due to Marker Misplacement
,”
ASME J. Biomech. Eng.
,
137
(
7
), p. 0
74502
.
40.
Hendershot
,
B. D.
, and
Wolf
,
E. J.
,
2015
, “
Persons With Unilateral Transfemoral Amputation Have Altered Lumbosacral Kinetics During Sitting and Standing Movements
,”
Gait Posture
,
42
(
2
), pp.
204
209
.
You do not currently have access to this content.