The mechanical response of intact blood vessels to applied loads can be delineated into passive and active components using an isometric decomposition approach. Whereas the passive response is due predominantly to the extracellular matrix (ECM) proteins and amorphous ground substance, the active response depends on the presence of smooth muscle cells (SMCs) and the contractile machinery activated within those cells. To better understand determinants of active stress generation within the vascular wall, we subjected porcine common carotid arteries (CCAs) to biaxial inflation–extension testing under maximally contracted or passive SMC conditions and semiquantitatively measured two known markers of the contractile SMC phenotype: smoothelin and smooth muscle-myosin heavy chain (SM-MHC). Using isometric decomposition and established constitutive models, an intuitive but novel correlation between the magnitude of active stress generation and the relative abundance of smoothelin and SM-MHC emerged. Our results reiterate the importance of stretch-dependent active stress generation to the total mechanical response. Overall these findings can be used to decouple the mechanical contribution of SMCs from the ECM and is therefore a powerful tool in the analysis of disease states and potential therapies where both constituent are altered.

References

References
1.
Cox
,
R. H.
,
1978
, “
Regional Variation of Series Elasticity in Canine Arterial Smooth Muscles
,”
Am. J. Physiol.
,
234
(
5
), pp.
H542
H551
.http://ajpheart.physiology.org/content/234/5/H542.article-info
2.
Dobrin
,
P. B.
,
1973
, “
Influence of Initial Length on Length Tension Relationship of Vascular Smooth Muscle
,”
Am. J. Physiol.
,
225
(3), pp.
664
670
.http://ajplegacy.physiology.org/content/225/3/664
3.
Doran
,
A. C.
,
Meller
,
N.
, and
McNamara
,
C. A.
,
2008
, “
Role of Smooth Muscle Cells in the Initiation and Early Progression of Atherosclerosis
,”
Arterioscler. Thromb. Vasc. Biol.
,
28
(
5
), pp.
812
819
.
4.
Zhou
,
B.
,
Rachev
,
A.
, and
Shazly
,
T.
,
2015
, “
The Biaxial Active Mechanical Properties of the Porcine Primary Renal Artery
,”
J. Mech. Behav. Biomed. Mater.
,
48
, pp.
28
37
.
5.
Agianniotis
,
A.
,
Rachev
,
A.
, and
Stergiopulos
,
N.
,
2012
, “
Active Axial Stress in Mouse Aorta
,”
J. Biomech.
,
45
(
11
), pp.
1924
1927
.
6.
Cox
,
R. H.
,
1975
, “
Arterial Wall Mechanics and Composition and the Effects of Smooth Muscle Activation
,”
Am. J. Physiol.
,
229
(
3
), pp.
807
812
.http://ajplegacy.physiology.org/content/229/3/807
7.
Dobrin
,
P. B.
,
1973
, “
Isometric and Isobaric Contraction of Carotid Arterial Smooth Muscle
,”
Am. J. Physiol.
,
225
(
3
), pp.
659
663
.http://ajplegacy.physiology.org/content/225/3/659
8.
Fridez
,
P.
,
Makino
,
A.
,
Kakoi
,
D.
,
Miyazaki
,
H.
,
Meister
,
J. J.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
,
2002
, “
Adaptation of Conduit Artery Vascular Smooth Muscle Tone to Induced Hypertension
,”
Ann. Biomed. Eng.
,
30
(
7
), pp.
905
916
.
9.
Rachev
,
A.
, and
Hayashi
,
K.
,
1999
, “
Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
459
468
.
10.
Fonck
,
E.
,
Prod'hom
,
G.
,
Roy
,
S.
,
Augsburger
,
L.
,
Rufenacht
,
D. A.
, and
Stergiopulos
,
N.
,
2007
, “
Effect of Elastin Degradation on Carotid Wall Mechanics as Assessed by a Constituent-Based Biomechanical Model
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
292
(
6
), pp.
H2754
H2763
.
11.
Wakatsuki
,
T.
,
Kolodney
,
M. S.
,
Zahalak
,
G. I.
, and
Elson
,
E. L.
,
2000
, “
Cell Mechanics Studied by a Reconstituted Model Tissue
,”
Biophys. J.
,
79
(
5
), pp.
2353
2368
.
12.
Prim
,
D. A.
,
Zhou
,
B.
,
Hartstone-Rose
,
A.
,
Uline
,
M. J.
,
Shazly
,
T.
, and
Eberth
,
J. F.
,
2016
, “
A Mechanical Argument for the Differential Performance of Coronary Artery Grafts
,”
J. Mech. Behav. Biomed. Mater.
,
54
, pp.
93
105
.
13.
Baek
,
S.
,
Gleason
,
R. L.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2007
, “
Theory of Small on Large: Potential Utility in Computations of Fluid–Solid Interactions in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
3070
3078
.
14.
Zeinali-Davarani
,
S.
,
Choi
,
J.
, and
Baek
,
S.
,
2009
, “
On Parameter Estimation for Biaxial Mechanical Behavior of Arteries
,”
J. Biomech.
,
42
(
4
), pp.
524
530
.
15.
Zhou
,
B.
,
Wolf
,
L.
,
Rachev
,
A.
, and
Shazly
,
T.
,
2014
, “
A Structure-Motivated Model of the Passive Mechanical Response of the Primary Porcine Renal Artery
,”
J. Mech. Med. Biol.
,
14
(
3
), p.
1450033
.
16.
Taylor
,
C. R.
, and
Levenson
,
R. M.
,
2006
, “
Quantification of Immunohistochemistry—Issues Concerning Methods, Utility and Semiquantitative Assessment II
,”
Histopathol.
,
49
(
4
), pp.
411
424
.
17.
Landini
,
G.
,
2008
, “
Advanced Shape Analysis With ImageJ
,”
ImageJ User and Developer Conference
, Luxembourg, UK, Nov. 6–7, pp. 116–121.http://imagejconf.tudor.lu/archive/imagej-user-and-developer-conference-2008/copy_of_programme/presentations/advanced-shape-analysisis-with-imagejj
18.
Nedorost
,
L.
,
Uemura
,
H.
,
Furck
,
A.
,
Saeed
,
I.
,
Slavik
,
Z.
,
Kobr
,
J.
, and
Tonar
,
Z.
,
2013
, “
Vascular Histopathologic Reaction to Pulmonary Artery Banding in an In Vivo Growing Porcine Model
,”
Pediatr. Cardiol.
,
34
(
7
), pp.
1652
1660
.
19.
Fredersdorf
,
S.
,
Thumann
,
C.
,
Ulucan
,
C.
,
Griese
,
D. P.
,
Luchner
,
A.
,
Riegger
,
G. A. J.
,
Kromer
,
E. P.
, and
Weil
,
J.
,
2004
, “
Myocardial Hypertrophy and Enhanced Left Ventricular Contractility in Zucker Diabetic Fatty Rats
,”
Cardiovasc. Pathol.
,
13
(
1
), pp.
11
19
.
20.
Eberlov
,
L.
,
Tonar
,
Z.
,
Witter
,
K.
,
Kkov
,
V.
,
Nedorost
,
L.
,
Koraben
,
M.
,
Tolinger
,
P.
,
Koov
,
J.
,
Boudov
,
L.
,
Teka
,
V.
,
Houdek
,
K.
,
Molek
,
J.
,
Vrzalov
,
J.
,
Peta
,
M.
,
Topolan
,
O.
, and
Valenta
,
J.
,
2013
, “
Asymptomatic Abdominal Aortic Aneurysms Show Histological Signs of Progression: A Quantitative Histochemical Analysis
,”
Pathobiology
,
80
(
1
), pp.
11
23
.
21.
van der Loop
,
F. T. L.
,
Gabbiani
,
G.
,
Kohnen
,
G.
,
Ramaekers
,
F. C. S.
, and
van Eys
,
G. J. J. M.
,
1997
, “
Differentiation of Smooth Muscle Cells in Human Blood Vessels as Defined by Smoothelin, a Novel Marker for the Contractile Phenotype
,”
Arterioscler. Thromb. Vasc. Biol.
,
17
(
4
), pp.
665
671
.
22.
Rensen
,
S. S. M.
,
Doevendans
,
P. a F. M.
, and
van Eys
,
G. J. J. M.
,
2007
, “
Regulation and Characteristics of Vascular Smooth Muscle Cell Phenotypic Diversity
,”
Neth. Heart J.
,
15
(
3
), pp.
100
108
.
23.
Hao
,
H.
,
Gabbiani
,
G.
, and
Bochaton-Piallat
,
M.-L.
,
2003
, “
Arterial Smooth Muscle Cell Heterogeneity: Implications for Atherosclerosis and Restenosis Development
,”
Arterioscler. Thromb. Vasc. Biol.
,
23
(
9
), pp.
1510
1520
.
24.
van Eys
,
G. J.
,
Niessen
,
P. M.
, and
Rensen
,
S. S.
,
2007
, “
Smoothelin in Vascular Smooth Muscle Cells
,”
Trends Cardiovasc. Med.
,
17
(
1
), pp.
26
30
.
25.
Roy
,
S.
,
Silacci
,
P.
, and
Stergiopulos
,
N.
,
2005
, “
Biomechanical Proprieties of Decellularized Porcine Common Carotid Arteries
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
289
(
4
), pp.
H1567
H1576
.
26.
Berne
,
R. M.
, and
Levy
,
M. N.
,
2001
,
Cardiovascular Physiology
,
Mosby
,
St. Louis, MO
.
You do not currently have access to this content.