This study focuses on thermal analysis of the problem of scaling up from the vitrification of rabbit kidneys to the vitrification of human kidneys, where vitrification is the preservation of biological material in the glassy state. The basis for this study is a successful cryopreservation protocol for a rabbit kidney model, based on using a proprietary vitrification solution known as M22. Using the finite element analysis (FEA) commercial code ANSYS, heat transfer simulations suggest that indeed the rabbit kidney unquestionably cools rapidly enough to be vitrified based on known intrarenal concentrations of M22. Scaling up 21-fold, computer simulations suggest less favorable conditions for human kidney vitrification. In this case, cooling rates below −100 °C are sometimes slower than 1 °C/min, a rate that provides a clear-cut margin of safety at all temperatures based on the stability of rabbit kidneys in past studies. Nevertheless, it is concluded in this study that vitrifying human kidneys is possible without significant ice damage, assuming that human kidneys can be perfused with M22 as effectively as rabbit kidneys. The thermal analysis suggests that cooling rates can be further increased by a careful design of the cryogenic protocol and by tailoring the container to the shape of the kidney, in contrast to the present cylindrical container. This study demonstrates the critical need for the thermal analysis of experimental cryopreservation and highlights the unmet need for measuring the thermophysical properties of cryoprotective solutions under conditions relevant to realistic thermal histories.

References

1.
Giwa
,
S.
,
2017
, “
The Promise of Organ and Tissue Preservation to Transform Medicine
,”
Nat. Biotechnol.
,
35
(
6
), pp.
530
542
.
2.
Lewis
,
J. K.
,
Bischof
,
J. C.
,
Braslavsky
,
I.
,
Brockbank
,
K. G. M.
,
Fahy
,
G. M.
,
Fuller
,
B. J.
,
Rabin
,
Y.
,
Tocchio
,
A.
,
Woods
,
E. J.
,
Wowk
,
B. G.
,
Acker
,
J. P.
, and
Giwa
,
S.
,
2016
, “
The Grand Challenges of Organ Banking: Proceedings From the First Global Summit on Complex Tissue Cryopreservation
,”
Cryobiology
,
72
(
2
), pp.
169
182
.
3.
Campbell
,
B. K.
,
Hernandez-Medrano
,
J.
,
Onions
,
V.
,
Pincott-Allen
,
C.
,
Aljaser
,
F.
,
Fisher
,
J.
,
McNeilly
,
A. S.
,
Webb
,
R.
, and
Picton
,
H. M.
,
2014
, “
Restoration of Ovarian Function and Natural Fertility Following the Cryopreservation and Autotransplantation of Whole Adult Sheep Ovaries
,”
Hum. Reprod.
,
29
(
8
), pp.
1749
1763
.
4.
Dittrich
,
R.
,
Maltaris
,
T.
,
Mueller
,
A.
,
Dimmler
,
A.
,
Hoffmann
,
I.
,
Kiesewetter
,
F.
, and
Beckmann
,
M. W.
,
2006
, “
Successful Uterus Cryopreservation in an Animal Model
,”
Horm. Metab. Res.
,
38
(
3
), pp.
141
145
.
5.
Hamilton
,
R.
,
Holst
,
H. I.
, and
Lehr
,
H. B.
,
1973
, “
Successful Preservation of Canine Small Intestine by Freezing
,”
J. Surg. Res.
,
14
(
4
), pp.
313
318
.
6.
Wang
,
Z.
,
He
,
B.
,
Duan
,
Y.
,
Shen
,
Y.
,
Zhu
,
L.
,
Zhu
,
X.
, and
Zhu
,
Z.
,
2014
, “
Cryopreservation and Replantation of Amputated Rat Hind Limbs
,”
Eur. J. Med. Res.
,
19
(
1
), p.
28
.
7.
Fahy
,
G. M.
,
Wowk
,
B.
,
Pagotan
,
R.
,
Chang
,
A.
,
Phan
,
J.
,
Thomson
,
B.
, and
Phan
,
L.
,
2009
, “
Physical and Biological Aspects of Renal Vitrification
,”
Organogenesis
,
5
(
3
), pp.
167
175
.
8.
Jacobsen
,
I. A.
,
Pegg
,
D. E.
,
Starklint
,
H.
,
Chemnitz
,
J.
,
Hunt
,
C.
,
Barfort
,
P.
, and
Diaper
,
M. P.
,
1984
, “
Effect of Cooling and Warming Rate on Glycerolized Rabbit Kidneys
,”
Cryobiology
,
21
(
6
), pp.
637
653
.
9.
Fahy
,
G. M.
, and
Wowk
,
B.
,
2015
, “
Principles of Cryopreservation by Vitrification
,”
Cryopreservation and Freeze-Drying Protocols
,
W. F.
Wolkers
, and
H.
Oldenhof
, eds.,
Springer
,
New York
, pp.
21
82
.
10.
Fahy
,
G. M.
,
MacFarlane
,
D. R.
,
Angell
,
C. A.
, and
Meryman
,
H. T.
,
1984
, “
Vitrification as an Approach to Cryopreservation
,”
Cryobiology
,
21
(
4
), pp.
407
426
.
11.
Wowk
,
B.
,
2010
, “
Thermodynamic Aspects of Vitrification
,”
Cryobiology
,
60
(
1
), pp.
11
22
.
12.
Fahy
,
G. M.
,
Wowk
,
B.
,
Wu
,
J.
,
Phan
,
J.
,
Rasch
,
C.
,
Chang
,
A.
, and
Zendejas
,
E.
,
2004
, “
Cryopreservation of Organs by Vitrification: Perspectives and Recent Advances
,”
Cryobiology
,
48
(
2
), pp.
157
178
.
13.
Fahy
,
G.
,
2013
, “
041 Consequences and Control of Ice Formation in the Renal Inner Medulla
,”
Cryobiology
,
67
(
3
), pp.
409
410
.
14.
Fahy
,
G. M.
,
2016
, “
Elimination of Most Damage After Perfusing Rabbit Kidneys With M22 Solutions
,”
Cryobiology
,
73
(
3
), p.
407
.
15.
Ehrlich
,
L. E.
,
Feig
,
J. S. G.
,
Schiffres
,
S. N.
,
Malen
,
J. A.
, and
Rabin
,
Y.
,
2015
, “
Large Thermal Conductivity Differences between the Crystalline and Vitrified States of DMSO With Applications to Cryopreservation
,”
PLoS One
,
10
(
5
), p.
e0125862
.
16.
Ehrlich
,
L. E.
,
Malen
,
J. A.
, and
Rabin
,
Y.
,
2016
, “
Thermal Conductivity of the Cryoprotective Cocktail DP6 in Cryogenic Temperatures, in the Presence and Absence of Synthetic Ice Modulators
,”
Cryobiology
,
73
(
2
), pp.
196
202
.
17.
Wowk
,
B.
, and
Fahy
,
G. M.
,
2005
, “
Toward Large Organ Vitrification: Extremely Low Critical Cooling and Warming Rates of M22 Vitrification Solution
,”
Cryobiology
,
51
, p.
362
.
18.
NIH, 2017, “
Heart, Aorta and Kidney CAD Model—NIH 3D Print Exchange
,” National Institutes of Health, Rockville, MD, accessed Dec. 12, 2016, hthttps://3dprint.nih.gov/discover/3dpx-000906
19.
Cheong
,
B.
,
Muthupillai
,
R.
,
Rubin
,
M. F.
, and
Flamm
,
S. D.
,
2007
, “
Normal Values for Renal Length and Volume as Measured by Magnetic Resonance Imaging
,”
Clin. J. Am. Soc. Nephrol.
,
2
(
1
), pp.
38
45
.
20.
Evans
,
S.
,
2000
, “
Electromagnetic Rewarming: The Effect of CPA Concentration and Radio Source Frequency on Uniformity and Efficiency of Heating
,”
Cryobiology
,
40
(
2
), pp.
126
138
.
21.
Valvano
,
J. W.
,
Cochran
,
J. R.
, and
Diller
,
K. R.
,
1985
, “
Thermal Conductivity and Diffusivity of Biomaterials Measured With Self-Heated Thermistors
,”
Int. J. Thermophys.
,
6
(
3
), pp.
301
311
.
22.
Duck
,
F. A.
,
2013
,
Physical Properties of Tissues: A Comprehensive Reference Book
,
Academic Press
, London.
23.
Holmes
,
K. R.
,
Ryan
,
W.
, and
Chen
,
M. M.
,
1983
, “
Thermal Conductivity and H2O Content in Rabbit Kidney Cortex and Medulla
,”
J. Therm. Biol.
,
8
(
4
), pp.
311
313
.
24.
Ehrlich
,
L. E.
,
Malen
,
J. A.
, and
Rabin
,
Y.
,
2016
, “
Thermal Conductivity of M22
,” (unpublished).
25.
Feig
,
J. S. G.
,
Solanki
,
P. K.
,
Eisenberg
,
D. P.
, and
Rabin
,
Y.
,
2016
, “
Polarized Light in Scanning Cryomacroscopy—Part II: Thermal Modeling and Analysis of Experimental Observations
,”
Cryobiology
,
73
(
2
), pp.
272
281
.
26.
Rios
,
J. L. J.
, and
Rabin
,
Y.
,
2006
, “
Thermal Expansion of Blood Vessels in Low Cryogenic Temperatures—Part II: Vitrification With VS55, DP6, and 7.05 M DMSO
,”
Cryobiology
,
52
(
2
), pp.
284
294
.
27.
Fukusako
,
S.
,
1990
, “
Thermophysical Properties of Ice, Snow, and Sea Ice
,”
Int. J. Thermophys.
,
11
(
2
), pp.
353
372
.
28.
Holman
,
J.
,
2009
,
Heat Transfer
,
McGraw-Hill Education
,
Boston, MA
.
29.
Zhang
,
X.
,
Hendro
,
W.
,
Fujii
,
M.
,
Tomimura
,
T.
, and
Imaishi
,
N.
,
2002
, “
Measurements of the Thermal Conductivity and Thermal Diffusivity of Polymer Melts With the Short-Hot-Wire Method
,”
Int. J. Thermophys.
,
23
(
4
), pp.
1077
1090
.
30.
Gaur
,
U.
, and
Wunderlich
,
B.
,
1982
, “
Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. V. Polystyrene
,”
J. Phys. Chem. Ref. Data
,
11
(
2
), pp.
313
325
.
31.
Patnode
,
W.
, and
Scheiber
,
W. J.
,
1939
, “
The Density, Thermal Expansion, Vapor Pressure, and Refractive Index of Styrene, and the Density and Thermal Expansion of Polystyrene
,”
J. Am. Chem. Soc.
,
61
(
12
), pp.
3449
3451
.
32.
Wang
,
J.
,
Carson
,
J. K.
,
North
,
M. F.
, and
Cleland
,
D. J.
,
2006
, “
A New Approach to Modelling the Effective Thermal Conductivity of Heterogeneous Materials
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3075
3083
.
33.
Giraud
,
S.
,
Favreau
,
F.
,
Chatauret
,
N.
,
Thuillier
,
R.
,
Maiga
,
S.
, and
Hauet
,
T.
,
2011
, “
Contribution of Large Pig for Renal Ischemia-Reperfusion and Transplantation Studies: The Preclinical Model
,”
J. Biomed. Biotechnol.
,
2011
, p.
532127
.
34.
Boutron
,
P.
,
1993
, “
Glass-Forming Tendency and Stability of the Amorphous State in Solutions of a 2,3-Butanediol Containing Mainly the Levo and Dextro Isomers in Water, Buffer, and Euro-Collins
,”
Cryobiology
,
30
(
1
), pp.
86
97
.
35.
Rabin
,
Y.
, and
Plitz
,
J.
,
2005
, “
Thermal Expansion of Blood Vessels and Muscle Specimens Permeated With DMSO, DP6, and VS55 at Cryogenic Temperatures
,”
Ann. Biomed. Eng.
,
33
(
9
), pp.
1213
1228
.
36.
Feig
,
J. S. G.
,
Eisenberg
,
D. P.
, and
Rabin
,
Y.
,
2016
, “
Polarized Light Scanning Cryomacroscopy—Part I: Experimental Apparatus and Observations of Vitrification, Crystallization, and Photoelasticity Effects
,”
Cryobiology
,
73
(
2
), pp.
261
271
.
37.
Wowk
,
B.
,
2007
, “
Ice Nucleation and Growth in Concentrated Vitrification Solutions
,”
Cryobiology
,
55
(
3
), p.
330
.
38.
Eisenberg
,
D. P.
,
Taylor
,
M. J.
, and
Rabin
,
Y.
,
2012
, “
Thermal Expansion of the Cryoprotectant Cocktail DP6 Combined With Synthetic Ice Modulators in Presence and Absence of Biological Tissues
,”
Cryobiology
,
65
(
2
), pp.
117
125
.
39.
Jimenez Rios
,
J. L.
, and
Rabin
,
Y.
,
2006
, “
Thermal Expansion of Blood Vessels in Low Cryogenic Temperatures—Part I: A New Experimental Device
,”
Cryobiology
,
52
(
2
), pp.
269
283
.
You do not currently have access to this content.