Computational fluid dynamics (CFD) provides a noninvasive method to functionally assess aortic hemodynamics. The thoracic aorta has an anatomically complex inlet comprising of the aortic valve and root, which is highly prone to different morphologies and pathologies. We investigated the effect of using patient-specific (PS) inflow velocity profiles compared to idealized profiles based on the patient's flow waveform. A healthy 31 yo with a normally functioning tricuspid aortic valve (subject A), and a 52 yo with a bicuspid aortic valve (BAV), aortic valvular stenosis, and dilated ascending aorta (subject B) were studied. Subjects underwent MR angiography to image and reconstruct three-dimensional (3D) geometric models of the thoracic aorta. Flow-magnetic resonance imaging (MRI) was acquired above the aortic valve and used to extract the patient-specific velocity profiles. Subject B's eccentric asymmetrical inflow profile led to highly complex velocity patterns, which were not replicated by the idealized velocity profiles. Despite having identical flow rates, the idealized inflow profiles displayed significantly different peak and radial velocities. Subject A's results showed some similarity between PS and parabolic inflow profiles; however, other parameters such as Flowasymmetry were significantly different. Idealized inflow velocity profiles significantly alter velocity patterns and produce inaccurate hemodynamic assessments in the thoracic aorta. The complex structure of the aortic valve and its predisposition to pathological change means the inflow into the thoracic aorta can be highly variable. CFD analysis of the thoracic aorta needs to utilize fully PS inflow boundary conditions in order to produce truly meaningful results.

References

References
1.
Friedman
,
M. H.
,
Hutchins
,
G. M.
,
Bargeron
,
C. B.
,
Deters
,
O. J.
, and
Mark
,
F. F.
,
1981
, “
Correlation Between Intimal Thickness and Fluid Shear in Human Arteries
,”
Atherosclerosis
,
39
(
3
), pp.
425
436
.
2.
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bharadvaj
,
B. K.
,
Sottiurai
,
V. S.
,
Mabon
,
R. F.
, and
Glagov
,
S.
,
1983
, “
Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress
,”
Circ. Res.
,
53
(
4
), pp.
502
514
.
3.
Yeung
,
J. J.
,
Kim
,
H. J.
,
Abbruzzese
,
T. A.
,
Vignon-Clementel
,
I. E.
,
Draney-Blomme
,
M. T.
,
Yeung
,
K. K.
,
Perkash
,
I.
,
Herfkens
,
R. J.
,
Taylor
,
C. A.
, and
Dalman
,
R. L.
,
2006
, “
Aortoiliac Hemodynamic and Morphologic Adaptation to Chronic Spinal Cord Injury
,”
J. Vasc. Surg.
,
44
(
6
), pp.
1254
1265
.
4.
Humphrey
,
J. D.
, and
Taylor
,
C. A.
,
2008
, “
Intracranial and Abdominal Aortic Aneurysms: Similarities, Differences, and Need for a New Class of Computational Models
,”
Annu. Rev. Biomed. Eng.
,
10
(
1
), pp.
221
246
.
5.
Chien
,
S.
,
Li
,
S.
, and
Shyy
,
Y. J.
,
1998
, “
Effects of Mechanical Forces on Signal Transduction and Gene Expression in Endothelial Cells
,”
Hypertension
,
31
(
1
), pp.
162
169
.
6.
Davies
,
P. F.
,
1995
, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
,
75
(
3
), pp.
519
560
.https://www.ncbi.nlm.nih.gov/pubmed/7624393
7.
Gibbons
,
G. H.
, and
Dzau
,
V. J.
,
1994
, “
The Emerging Concept of Vascular Remodeling
,”
N. Engl. J. Med.
,
330
(
20
), pp.
1431
1438
.
8.
Langille
,
B. L.
,
1996
, “
Arterial Remodeling: Relation to Hemodynamics
,”
Can. J. Physiol. Pharmacol.
,
74
(
7
), pp.
834
841
.
9.
Humphrey
,
J. D.
,
2008
, “
Mechanisms of Arterial Remodeling in Hypertension: Coupled Roles of Wall Shear and Intramural Stress
,”
Hypertension
,
52
(
2
), pp.
195
200
.
10.
Xiong
,
G.
,
Figueroa
,
C. A.
,
Xiao
,
N.
, and
Taylor
,
C. A.
,
2011
, “
Simulation of Blood Flow in Deformable Vessels Using Subject-Specific Geometry and Spatially Varying Wall Properties
,”
Int. J. Numer. Method Biomed. Eng.
,
27
(
7
), pp.
1000
1016
.
11.
Milner
,
J. S.
,
Moore
,
J. A.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
,
1998
, “
Hemodynamics of Human Carotid Artery Bifurcations: Computational Studies With Models Reconstructed From Magnetic Resonance Imaging of Normal Subjects
,”
J. Vasc. Surg.
,
28
(
1
), pp.
143
156
.
12.
Cebral
,
J. R.
,
Yim
,
P. J.
,
Lohner
,
R.
,
Soto
,
O.
, and
Choyke
,
P. L.
,
2002
, “
Blood Flow Modeling in Carotid Arteries With Computational Fluid Dynamics and MR Imaging
,”
Acad. Radiol.
,
9
(
11
), pp.
1286
1299
.
13.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
,
2002
, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
,
36
(
3
), pp.
589
597
.
14.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
,
2003
, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
,
37
(
4
), pp.
724
732
.
15.
Les
,
A. S.
,
Shadden
,
S. C.
,
Figueroa
,
C. A.
,
Park
,
J. M.
,
Tedesco
,
M. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
,
2010
, “
Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1288
1313
.
16.
Li
,
Z.
, and
Kleinstreuer
,
C.
,
2005
, “
Blood Flow and Structure Interactions in a Stented Abdominal Aortic Aneurysm Model
,”
Med. Eng. Phys.
,
27
(
5
), pp.
369
382
.
17.
Stuhne
,
G. R.
, and
Steinman
,
D. A.
,
2004
, “
Finite-Element Modeling of the Hemodynamics of Stented Aneurysms
,”
ASME J. Biomech. Eng.
,
126
(
3
), pp.
382
387
.
18.
Migliavacca
,
F.
,
Balossino
,
R.
,
Pennati
,
G.
,
Dubini
,
G.
,
Hsia
,
T. Y.
,
de Leval
,
M. R.
, and
Bove
,
E. L.
,
2006
, “
Multiscale Modelling in Biofluidynamics: Application to Reconstructive Paediatric Cardiac Surgery
,”
J. Biomech.
,
39
(
6
), pp.
1010
1020
.
19.
Soerensen
,
D. D.
,
Pekkan
,
K.
,
de Zelicourt
,
D.
,
Sharma
,
S.
,
Kanter
,
K.
,
Fogel
,
M.
, and
Yoganathan
,
A. P.
,
2007
, “
Introduction of a New Optimized Total Cavopulmonary Connection
,”
Ann. Thorac. Surg.
,
83
(
6
), pp.
2182
2190
.
20.
Taylor
,
C. A.
,
Draney
,
M. T.
,
Ku
,
J. P.
,
Parker
,
D.
,
Steele
,
B. N.
,
Wang
,
K.
, and
Zarins
,
C. K.
,
1999
, “
Predictive Medicine: Computational Techniques in Therapeutic Decision-Making
,”
Comput. Aided Surg.
,
4
(
5
), pp.
231
247
.
21.
Lee
,
S. W.
, and
Steinman
,
D. A.
,
2007
, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
273
278
.
22.
Lee
,
K. W.
,
Wood
,
N. B.
, and
Xu
,
X. Y.
,
2004
, “
Ultrasound Image-Based Computer Model of a Common Carotid Artery With a Plaque
,”
Med. Eng. Phys.
,
26
(
10
), pp.
823
840
.
23.
Steinman
,
D. A.
,
2002
, “
Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
483
497
.
24.
Wake
,
A. K.
,
Oshinski
,
J. N.
,
Tannenbaum
,
A. R.
, and
Giddens
,
D. P.
,
2009
, “
Choice of In Vivo Versus Idealized Velocity Boundary Conditions Influences Physiologically Relevant Flow Patterns in a Subject-Specific Simulation of Flow in the Human Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
131
(
2
), p.
021013
.
25.
Moyle
,
K. R.
,
Antiga
,
L.
, and
Steinman
,
D. A.
,
2006
, “
Inlet Conditions for Image-Based CFD Models of the Carotid Bifurcation: Is It Reasonable to Assume Fully Developed Flow?
,”
ASME J. Biomech. Eng.
,
128
(
3
), pp.
371
379
.
26.
Steinman
,
D. A.
,
Thomas
,
J. B.
,
Ladak
,
H. M.
,
Milner
,
J. S.
,
Rutt
,
B. K.
, and
Spence
,
J. D.
,
2002
, “
Reconstruction of Carotid Bifurcation Hemodynamics and Wall Thickness Using Computational Fluid Dynamics and MRI
,”
Magn. Reson. Med.
,
47
(
1
), pp.
149
159
.
27.
Vignon-Clementel
,
I. E.
,
Alberto Figueroa
,
C.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.
28.
Campbell
,
I. C.
,
Ries
,
J.
,
Dhawan
,
S. S.
,
Quyyumi
,
A. A.
,
Taylor
,
W. R.
, and
Oshinski
,
J. N.
,
2012
, “
Effect of Inlet Velocity Profiles on Patient-Specific Computational Fluid Dynamics Simulations of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
134
(
5
), p.
051001
.
29.
Sigovan
,
M.
,
Dyverfeldt
,
P.
,
Wrenn
,
J.
,
Tseng
,
E. E.
,
Saloner
,
D.
, and
Hope
,
M. D.
,
2015
, “
Extended 3D Approach for Quantification of Abnormal Ascending Aortic Flow
,”
Magn. Reson. Imaging
,
33
(
5
), pp.
695
700
.
30.
Waller
,
B. F.
,
Howard
,
J.
, and
Fess
,
S.
,
1994
, “
Pathology of Aortic Valve Stenosis and Pure Aortic Regurgitation: A Clinical Morphologic Assessment—Part II
,”
Clin. Cardiol.
,
17
(
3
), pp.
150
156
.
31.
Waller
,
B.
,
Howard
,
J.
, and
Fess
,
S.
,
1994
, “
Pathology of Aortic Valve Stenosis and Pure Aortic Regurgitation: A Clinical Morphologic Assessment—Part I
,”
Clin. Cardiol.
,
17
(
2
), pp.
85
92
.
32.
Hoffman
,
J. I.
, and
Kaplan
,
S.
,
2002
, “
The Incidence of Congenital Heart Disease
,”
J. Am. Coll. Cardiol.
,
39
(
12
), pp.
1890
1900
.
33.
Della Corte
,
A.
,
Bancone
,
C.
,
Quarto
,
C.
,
Dialetto
,
G.
,
Covino
,
F. E.
,
Scardone
,
M.
,
Caianiello
,
G.
, and
Cotrufo
,
M.
,
2007
, “
Predictors of Ascending Aortic Dilatation With Bicuspid Aortic Valve: A Wide Spectrum of Disease Expression
,”
Eur. J. Cardiothorac. Surg.
,
31
(
3
), pp.
397
404
.
34.
Chandra
,
S.
,
Raut
,
S. S.
,
Jana
,
A.
,
Biederman
,
R. W.
,
Doyle
,
M.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2013
, “
Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms: The Impact of Patient-Specific Inflow Conditions and Fluid/Solid Coupling
,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
081001
.
35.
Marzo
,
A.
,
Singh
,
P.
,
Reymond
,
P.
,
Stergiopulos
,
N.
,
Patel
,
U.
, and
Hose
,
R.
,
2009
, “
Influence of Inlet Boundary Conditions on the Local Haemodynamics of Intracranial Aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
431
444
.
36.
Myers
,
J. G.
,
Moore
,
J. A.
,
Ojha
,
M.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
,
2001
, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
,
29
(
2
), pp.
109
120
.
37.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Gallo
,
D.
,
Bignardi
,
C.
, and
Rizzo
,
G.
,
2013
, “
Inflow Boundary Conditions for Image-Based Computational Hemodynamics: Impact of Idealized Versus Measured Velocity Profiles in the Human Aorta
,”
J. Biomech.
,
46
(
1
), pp.
102
109
.
38.
Efstathopoulos
,
E. P.
,
Patatoukas
,
G.
,
Pantos
,
I.
,
Benekos
,
O.
,
Katritsis
,
D.
, and
Kelekis
,
N. L.
,
2008
, “
Wall Shear Stress Calculation in Ascending Aorta Using Phase Contrast Magnetic Resonance Imaging. Investigating Effective Ways to Calculate It in Clinical Practice
,”
Phys. Med.
,
24
(
4
), pp.
175
181
.
39.
Mynard
,
J. P.
,
Wasserman
,
B. A.
, and
Steinman
,
D. A.
,
2013
, “
Errors in the Estimation of Wall Shear Stress by Maximum Doppler Velocity
,”
Atherosclerosis
,
227
(
2
), pp.
259
266
.
40.
Figueroa
,
C.
,
Khlebnikov
,
R.
,
Lau
,
K. D.
,
Arthurs
,
C. J.
,
Dillon-Murphy
,
D.
,
Alastruey-Arimon
,
J.
, and
Aguirre
,
M.
, 2017, “Crimson,” Crimson, Austin, TX, accessed Sept. 30, 2017, www.crimson.software
41.
Wang
,
K. C.
,
Dutton
,
R. W.
, and
Taylor
,
C. A.
,
1999
, “
Improving Geometric Model Construction for Blood Flow Modeling
,”
IEEE Eng. Med. Biol. Mag.
,
18
(
6
), pp.
33
39
.
42.
Muller
,
J.
,
Sahni
,
O.
,
Li
,
X.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
,
2005
, “
Anisotropic Adaptive Finite Element Method for Modelling Blood Flow
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
5
), pp.
295
305
.
43.
Whiting
,
C.
, and
Jansen
,
K.
,
2001
, “
A Stabilized Finite Element Method for the Incompressible Navier–Stokes Equations Using a Hierarchical Basis
,”
Int. J. Numer. Methods Fluids
,
35
(
1
), pp.
93
116
.
44.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. C.
,
Hughes
,
T. J.
, and
Taylor
,
C. A.
,
2006
, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5685
5706
.
45.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.
46.
Xiao
,
N.
,
Alastruey
,
J.
, and
Figueroa
,
C. A.
,
2014
, “
A Systematic Comparison Between 1-D and 3-D Hemodynamics in Compliant Arterial Models
,”
Int. J. Numer. Method Biomed. Eng.
,
30
(
2
), pp.
204
231
.
47.
Mahadevia
,
R.
,
Barker
,
A. J.
,
Schnell
,
S.
,
Entezari
,
P.
,
Kansal
,
P.
,
Fedak
,
P. W.
,
Malaisrie
,
S. C.
,
McCarthy
,
P.
,
Collins
,
J.
,
Carr
,
J.
, and
Markl
,
M.
,
2014
, “
Bicuspid Aortic Cusp Fusion Morphology Alters Aortic Three-Dimensional Outflow Patterns, Wall Shear Stress, and Expression of Aortopathy
,”
Circulation
,
129
(
6
), pp.
673
682
.
48.
Hardman
,
D.
,
Semple
,
S. I.
,
Richards
,
J. M.
, and
Hoskins
,
P. R.
,
2013
, “
Comparison of Patient-Specific Inlet Boundary Conditions in the Numerical Modelling of Blood Flow in Abdominal Aortic Aneurysm Disease
,”
Int. J. Numer. Method Biomed. Eng.
,
29
(
2
), pp.
165
178
.
49.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Cadioli
,
M.
,
Esposito
,
A.
,
De Cobelli
,
F.
,
Del Maschio
,
A.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2009
, “
In Vivo Quantification of Helical Blood Flow in Human Aorta by Time-Resolved Three-Dimensional Cine Phase Contrast Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
37
(
3
), pp.
516
531
.
50.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
Del Gaudio
,
C.
,
D'Avenio
,
G.
,
Balducci
,
A.
, and
Barbaro
,
V.
,
2005
, “
A Mathematical Description of Blood Spiral Flow in Vessels: Application to a Numerical Study of Flow in Arterial Bending
,”
J. Biomech.
,
38
(
7
), pp.
1375
1386
.
51.
Markl
,
M.
,
Draney
,
M. T.
,
Hope
,
M. D.
,
Levin
,
J. M.
,
Chan
,
F. P.
,
Alley
,
M. T.
,
Pelc
,
N. J.
, and
Herfkens
,
R. J.
,
2004
, “
Time-Resolved 3-Dimensional Velocity Mapping in the Thoracic Aorta: Visualization of 3-Directional Blood Flow Patterns in Healthy Volunteers and Patients
,”
J. Comput. Assisted Tomogr.
,
28
(
4
), pp.
459
468
.
52.
Baciewicz
,
F. A.
,
Penney
,
D. G.
,
Marinelli
,
W. A.
, and
Marinelli
,
R.
,
1991
, “
Torsional Ventricular Motion and Rotary Blood Flow. What is the Clinical Significance
,”
Cardiac Chronicle
,
5
, pp.
1
8
.http://www.rsarchive.org/RelArtic/Marinelli/cc.html
53.
Farthing
,
S.
, and
Peronneau
,
P.
,
1979
, “
Flow in the Thoracic Aorta
,”
Cardiovasc. Res.
,
13
(
11
), pp.
607
620
.
54.
Bellhouse
,
B. J.
, and
Reid
,
K. G.
,
1969
, “
Fluid Mechanics of the Aortic Valve
,”
Br. Heart J.
,
31
(
3
), p.
391
.
55.
Chandran
,
K. B.
,
1993
, “
Flow Dynamics in the Human Aorta
,”
ASME J. Biomech. Eng.
,
115
(
4B
), pp.
611
616
.
56.
Chandran
,
K. B.
,
Yearwood
,
T. L.
, and
Wieting
,
D. W.
,
1979
, “
An Experimental Study of Pulsatile Flow in a Curved Tube
,”
J. Biomech.
,
12
(
10
), pp.
793
805
.
57.
Yearwood
,
T. L.
, and
Chandran
,
K. B.
,
1980
, “
Experimental Investigation of Steady Flow Through a Model of the Human Aortic Arch
,”
J. Biomech.
,
13
(
12
), pp.
1075
1088
.
58.
Yearwood
,
T. L.
, and
Chandran
,
K. B.
,
1982
, “
Physiological Pulsatile Flow Experiments in a Model of the Human Aortic Arch
,”
J. Biomech.
,
15
(
9
), pp.
683
704
.
59.
Frazin
,
L. J.
,
Vonesh
,
M. J.
,
Chandran
,
K. B.
,
Shipkowitz
,
T.
,
Yaacoub
,
A. S.
, and
McPherson
,
D. D.
,
1996
, “
Confirmation and Initial Documentation of Thoracic and Abdominal Aortic Helical Flow. An Ultrasound Study
,”
ASAIO J.
,
42
(
6
), pp.
951
956
.
60.
Kilner
,
P. J.
,
Yang
,
G. Z.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
, and
Longmore
,
D. B.
,
1993
, “
Helical and Retrograde Secondary Flow Patterns in the Aortic Arch Studied by Three-Directional Magnetic Resonance Velocity Mapping
,”
Circulation
,
88
(
5
), pp.
2235
2247
.
61.
Frazin
,
L. J.
,
Lanza
,
G.
,
Vonesh
,
M.
,
Khasho
,
F.
,
Spitzzeri
,
C.
,
McGee
,
S.
,
Mehlman
,
D.
,
Chandran
,
K. B.
,
Talano
,
J.
, and
McPherson
,
D.
,
1990
, “
Functional Chiral Asymmetry in Descending Thoracic Aorta
,”
Circulation
,
82
(
6
), pp.
1985
1994
.
62.
Pritchard
,
W. F.
,
Davies
,
P. F.
,
Derafshi
,
Z.
,
Polacek
,
D. C.
,
Tsao
,
R.
,
Dull
,
R. O.
,
Jones
,
S. A.
, and
Giddens
,
D. P.
,
1995
, “
Effects of Wall Shear Stress and Fluid Recirculation on the Localization of Circulating Monocytes in a Three-Dimensional Flow Model
,”
J. Biomech.
,
28
(
12
), pp.
1459
1469
.
63.
Boutsianis
,
E.
,
Gupta
,
S.
,
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2008
, “
Boundary Conditions by Schwarz-Christoffel Mapping in Anatomically Accurate Hemodynamics
,”
Ann. Biomed. Eng.
,
36
(
12
), pp.
2068
2084
.
64.
Barker
,
A. J.
,
Lanning
,
C.
, and
Shandas
,
R.
,
2010
, “
Quantification of Hemodynamic Wall Shear Stress in Patients With Bicuspid Aortic Valve Using Phase-Contrast MRI
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
788
800
.
65.
Nistri
,
S.
,
Sorbo
,
M. D.
,
Marin
,
M.
,
Palisi
,
M.
,
Scognamiglio
,
R.
, and
Thiene
,
G.
,
1999
, “
Aortic Root Dilatation in Young Men With Normally Functioning Bicuspid Aortic Valves
,”
Heart
,
82
(
1
), pp.
19
22
.
66.
Abdulkareem
,
N.
,
Smelt
,
J.
, and
Jahangiri
,
M.
,
2013
, “
Bicuspid Aortic Valve Aortopathy: Genetics, Pathophysiology and Medical Therapy
,”
Interact. Cardiovasc. Thorac. Surg.
,
17
(
3
), pp.
554
559
.
67.
Taylor
,
C. A.
, and
Figueroa
,
C. A.
,
2009
, “
Patient-Specific Modeling of Cardiovascular Mechanics
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
109
134
.
68.
Brown
,
A. G.
,
Shi
,
Y.
,
Marzo
,
A.
,
Staicu
,
C.
,
Valverde
,
I.
,
Beerbaum
,
P.
,
Lawford
,
P. V.
, and
Hose
,
D. R.
,
2012
, “
Accuracy vs. Computational Time: Translating Aortic Simulations to the Clinic
,”
J. Biomech.
,
45
(
3
), pp.
516
523
.
69.
Youssefi
,
P.
,
Gomez
,
A.
,
He
,
T.
,
Anderson
,
L.
,
Bunce
,
N.
,
Sharma
,
R.
,
Figueroa
,
C. A.
, and
Jahangiri
,
M.
,
2017
, “
Patient-Specific Computational Fluid Dynamics-Assessment of Aortic Hemodynamics in a Spectrum of Aortic Valve Pathologies
,”
J. Thorac. Cardiovasc. Surg.
,
153
(
1
), pp.
8
20
.
You do not currently have access to this content.