Bone ingrowth and remodeling are two different evolutionary processes which might occur simultaneously. Both these processes are influenced by local mechanical stimulus. However, a combined study on bone ingrowth and remodeling has rarely been performed. This study is aimed at understanding the relationship between bone ingrowth and adaptation and their combined influence on fixation of the acetabular component. Based on three-dimensional (3D) macroscale finite element (FE) model of implanted pelvis and microscale FE model of implant–bone interface, a multiscale framework has been developed. The numerical prediction of peri-acetabular bone adaptation was based on a strain-energy density-based formulation. Bone ingrowth in the microscale models was simulated using the mechanoregulatory algorithm. An increase in bone strains near the acetabular rim was observed in the implanted pelvis model, whereas the central part of the acetabulum was observed to be stress shielded. Consequently, progressive bone apposition near the acetabular rim and resorption near the central region were observed. Bone remodeling caused a gradual increase in the implant–bone relative displacements. Evolutionary bone ingrowth was observed around the entire acetabular component. Poor bone ingrowth of 3–5% was predicted around the centro-inferio and inferio-posterio-superio-peripheral regions owing to higher implant–bone relative displacements, whereas the anterio-inferior and centro-superior regions exhibited improved bone ingrowth of 35–55% due to moderate implant–bone relative displacement. For an uncemented acetabular CoCrMo component, bone ingrowth had hardly any effect on bone remodeling; however, bone remodeling had considerable influence on bone ingrowth.

References

References
1.
Wetters
,
N. G.
,
Murray
,
T. G.
,
Moric
,
M.
,
Sporer
,
S. M.
,
Paprosky
,
W. G.
, and
Della Valle
,
C. J.
,
2013
, “
Risk Factors for Dislocation After Revision Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
471
(
2
), pp.
410
416
.
2.
Dargel
,
J.
,
Oppermann
,
J.
,
Brüggemann
,
G. P.
, and
Eysel
,
P.
,
2014
, “
Dislocation Following Total Hip Replacement
,”
Dtsch. Arztebl. Int.
,
111
(
51–52
), pp.
884
890
.
3.
Long
,
W. J.
,
Noiseux
,
N. O.
,
Mabry
,
T. M.
,
Hanssen
,
A. D.
, and
Lewallen
,
D. G.
,
2015
, “
Uncemented Porous Tantalum Acetabular Components: Early Follow-Up and Failures in 599 Revision Total Hip Arthroplasties
,”
Iowa Orthop. J.
,
35
, pp.
108
113
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492128/
4.
Unger
,
A. S.
,
Lewis
,
R. J.
, and
Gruen
,
T.
,
2005
, “
Evaluation of a Porous Tantalum Uncemented Acetabular Cup in Revision Total Hip Arthroplasty: Clinical and Radiological Results of 60 Hips
,”
J. Arthroplasty
,
20
(
8
), pp.
1002
1009
.
5.
Engh
,
C. A.
,
Griffin
,
W. L.
, and
Marx
,
C. L.
,
1990
, “
Cementless Acetabular Components
,”
Bone Joint J.
,
72B
(
1
), pp.
53
59
.http://bjj.boneandjoint.org.uk/content/jbjsbr/72-B/1/53.full.pdf
6.
Liu
,
X.
, and
Niebur
,
G. L.
,
2008
, “
Bone Ingrowth Into a Porous Coated Implant Predicted by a Mechano-Regulatory Tissue Differentiation Algorithm
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
335
344
.
7.
Janssen
,
D.
,
Zwartele
,
R. E.
,
Doets
,
H. C.
, and
Verdonschot
,
N.
,
2010
, “
Computational Assessment of Press-Fit Acetabular Implant Fixation: The Effect of Implant Design, Interference Fit, Bone Quality, and Frictional Properties
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
1
), pp.
65
75
.
8.
Engh
,
C. A.
,
Zettl-Schaffer
,
K. F.
,
Kukita
,
Y.
,
Sweet
,
D.
,
Jasty
,
M.
, and
Bragdon
,
C.
,
1993
, “
Histological and Radiographic Assessment of Well Functioning Porous-Coated Acetabular Components: A Human Postmortem Retrieval Study
,”
J. Bone Jt. Surg. Am.
,
75
(
6
), pp.
814
824
.
9.
Hanzlik
,
J. A.
, and
Day
,
J. S.
,
2013
, “
Bone Ingrowth in Well-Fixed Retrieved Porous Tantalum Implants
,”
J. Arthroplasty
,
28
(
6
), pp.
922
927
.
10.
Mukherjee
,
K.
, and
Gupta
,
S.
,
2016
, “
Bone Ingrowth Around Porous Coated Acetabular Implant: A Three-Dimensional Finite Element Study Using Mechanoregulatory Algorithm
,”
Biomech. Model. Mechanobiol.
,
15
(
2
), pp.
389
403
.
11.
Mukherjee
,
K.
, and
Gupta
,
S.
,
2017
, “
Mechanobiological Simulations of Peri-Acetabular Bone Ingrowth: A Comparative Analysis of Cell-Phenotype Specific and Phenomenological Algorithms
,”
Med. Biol. Eng. Comput.
,
55
(
3
), pp.
449
465
.
12.
Wilkinson
,
J. M.
,
Peel
,
N. F.
,
Elson
,
R. A.
,
Stockley
,
I.
, and
Eastell
,
R.
,
2001
, “
Measuring Bone Mineral Density of the Pelvis and Proximal Femur After Total Hip Arthroplasty
,”
J. Bone Jt. Surg. Br.
,
83
(
2
), pp.
283
288
.
13.
Wright
,
J. M.
,
Pellicci
,
P. M.
,
Salvati
,
E. A.
,
Ghelman
,
B.
,
Roberts
,
M. M.
, and
Koh
,
J. L.
,
2001
, “
Bone Density Adjacent to Press-Fit Acetabular Components: A Prospective Analysis With Quantitative Computer Tomography
,”
J. Bone Jt. Surg. Am.
,
83
(
4
), pp.
529
536
.
14.
Meneghini
,
R. M.
,
Ford
,
K. S.
,
McCollough
,
C. H.
,
Hanssen
,
A. D.
, and
Lewallen
,
D. G.
,
2010
, “
Bone Remodelling Around Porous Metal Cementless Acetabular Component
,”
J. Arthroplasty
,
25
(
5
), pp.
741
747
.
15.
Laursen
,
M. B.
,
Nielsen
,
P. T.
, and
Søballe
,
K.
,
2007
, “
Bone Remodelling Around HA Coated Acetabular Cup
,”
Int. Orthop.
,
31
(
2
), pp.
199
204
.
16.
Mulier
,
M.
,
Jaecques
,
S. V. N.
,
Raaijmaakers
,
M.
,
Nijs
,
J.
,
van der Perre
,
G.
, and
Jonkers
,
I.
,
2011
, “
Early Periprosthetic Bone Remodelling Around Cemented and Uncemented Custom-Made Femoral Components and Their Uncemented Acetabular Cups
,”
Arch. Orthop. Trauma Surg.
,
131
(
7
), pp.
941
948
.
17.
Ghosh
,
R.
,
Mukherjee
,
K.
, and
Gupta
,
S.
,
2013
, “
Bone Remodelling Around Uncemented Metallic and Ceramic Acetabular Components
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
5
), pp.
490
502
.
18.
Mukherjee
,
K.
, and
Gupta
,
S.
,
2016
, “
The Effects of Musculoskeletal Loading Regimes on Pre-Clinical Analysis of Acetabular Component
,”
Proc. Inst. Mech. Eng., Part H
,
230
(
10
), pp.
918
929
.
19.
Manley
,
M. T.
,
Ong
,
K. L.
, and
Kurtz
,
S. M.
,
2006
, “
The Potential for Bone Loss in Acetabular Structures Following THA
,”
Clin. Orthop. Relat. Res.
,
453
, pp.
246
253
.
20.
Ghosh
,
R.
, and
Gupta
,
S.
,
2014
, “
Bone Remodelling Around Cementless Composite Acetabular Components: The Effects of Implant Geometry and Implant–Bone Interfacial Conditions
,”
J. Mech. Behav. Biomed. Mater.
,
32
, pp.
257
269
.
21.
Spears
,
I. R.
,
Pfleiderer
,
M.
,
Schneider
,
E.
,
Hailee
,
E.
, and
Morlock
,
M. M.
,
2001
, “
The Effect of Interfacial Parameters on Cup-Bone Relative Micromotions: A Finite Element Investigation
,”
J. Biomech.
,
34
(
1
), pp.
113
120
.
22.
Thompson
,
M. S.
,
Northmore-Ball
,
M. D.
, and
Tanner
,
K. E.
,
2002
, “
Effect of Acetabular Resurfacing Component Material and Fixation on the Strain Distribution in the Pelvis
,”
Proc. Inst. Mech. Eng., Part H
,
216
(
4
), pp.
237
245
.
23.
Pal
,
B.
, and
Gupta
,
S.
,
2011
, “
The Effect of Primary Stability on Load Transfer and Bone Remodelling Within the Uncemented Resurfaced Femur
,”
Proc. Inst. Mech. Eng., Part H
,
225
(
6
), pp.
549
561
.
24.
Fernandes
,
P. R.
,
Folgado
,
J.
,
Jacobs
,
C.
, and
Pellegrini
,
V.
,
2002
, “
A Contact Model With Ingrowth Control for Bone Remodelling Around Cementless Stems
,”
J. Biomech.
,
35
(
2
), pp.
167
176
.
25.
Folgado
,
J.
,
Fernandes
,
P. R.
,
Jacobs
,
C. R.
, and
Pellegrini
,
V. D.
, Jr.
,
2009
, “
Influence of Femoral Material and Extent of Porous Coating on Bone Ingrowth and Atrophy in Cementless Total Hip Arthroplasty: An Iterative Finite Element Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
2
), pp.
135
145
.
26.
Tarala
,
M.
,
Janssen
,
D.
, and
Verdonschot
,
N.
,
2011
, “
Balancing Incompatible Endoprosthetic Design Goals: A Combined Ingrowth and Bone Remodeling Simulation
,”
Med. Eng. Phys.
,
33
(
3
), pp.
374
380
.
27.
Tarala
,
M.
,
Janssen
,
D.
, and
Verdonschot
,
N.
,
2013
, “
Toward a Method to Simulate the Process of Bone Ingrowth in Cementless THA Using Finite Element Method
,”
Med. Eng. Phys.
,
35
(
4
), pp.
543
548
.
28.
Ruben
,
R. B.
,
Folgado
,
J.
, and
Fernandes
,
P. R.
,
2012
, “
On the Optimal Shape of Hip Implants
,”
J. Biomech.
,
45
(
2
), pp.
239
246
.
29.
Caouette
,
C.
,
Bureau
,
M. N.
,
Lavigne
,
M.
,
Vendittoli
,
P. A.
, and
Nuño
,
N.
,
2013
, “
A New Interface Element With Progressive Damage and Osseointegration for Modeling of Interfaces in Hip Resurfacing
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
3
), pp.
209
220
.
30.
Weinans
,
H.
,
Huiskes
,
R.
,
van Reitbergen
,
B.
,
Sumner
,
D. R.
,
Turner
,
T. M.
, and
Galante
,
J. O.
,
1993
, “
Adaptive Bone Remodelling Around Bonded Noncemented Total Hip Arthroplasty: A Comparison Between Animal Experiments and Computer Simulation
,”
J. Orthop. Res.
,
11
(
4
), pp.
500
513
.
31.
van Rietbergen
,
B.
,
Huiskes
,
R.
,
Weinans
,
H.
,
Sumner
,
D. R.
,
Turner
,
T. M.
, and
Galante
,
J. O.
,
1993
, “
The Mechanism of Bone Remodelling and Resorption Around Press-Fitted THA Stems
,”
J. Biomech.
,
26
(
4–5
), pp.
369
382
.
32.
Claes
,
L. E.
, and
Heigele
,
C. A.
,
1999
, “
Magnitudes of Local Stress and Strain Along Bony Surfaces Predict the Course and Type of Fracture Healing
,”
J. Biomech.
,
32
(
3
), pp.
255
266
.
33.
Lacroix
,
D.
, and
Prendergast
,
P. J.
,
2002
, “
A Mechano-Regulation Model for Tissue Differentiation During Fracture Healing: Analysis of Gap Size and Loading
,”
J. Biomech.
,
35
(
9
), pp.
1163
1171
.
34.
Ghosh
,
R.
,
Pal
,
B.
,
Ghosh
,
D.
, and
Gupta
,
S.
,
2015
, “
Finite Element Analysis of a Hemi-Pelvis: The Effect of Inclusion of Cartilage Layer on Acetabular Stresses and Strain
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
7
), pp.
697
710
.
35.
FDA
,
2006
, “
Birmingham Hip Resurfacing (BHR) System: Summary of Safety and Effectiveness Data
,” U.S. Food and Drug Administration, Rockville, MD, accessed Aug. 21, 2014, http://www.accessdata.fda.gov/cdrh_docs/pdf4/P040033b.pdf
36.
Taddei
,
F.
,
Pancanti
,
A.
, and
Viceconti
,
M.
,
2004
, “
An Improved Method for the Automatic Mapping of Computed Tomography Numbers Onto Finite Element Models
,”
Med. Eng. Phys.
,
26
(
1
), pp.
61
69
.
37.
Dalstra
,
M.
, and
Huiskes
,
R.
,
1995
, “
Load Transfer Across the Pelvis Bone
,”
J. Biomech.
,
28
(
6
), pp.
715
724
.
38.
Yew
,
A.
,
Jin
,
Z. M.
,
Donn
,
A.
,
Morlock
,
M. M.
, and
Isaac
,
G.
,
2006
, “
Deformation of Press-Fitted Metallic Resurfacing Cups—Part 2: Finite Element Simulation
,”
Proc. Inst. Mech. Eng., Part H
,
220
(
2
), pp.
311
319
.
39.
Liu
,
F.
,
Jin
,
Z.
,
Roberts
,
P.
, and
Grigoris
,
P.
,
2006
, “
Importance of Head Diameter, Clearance and Cup Wall Thickness in Elastohydrodynamic Lubrication Analysis of Metal-on-Metal Hip Resurfacing Prostheses
,”
Proc. Inst. Mech. Eng., Part H
,
220
(
6
), pp.
695
704
.
40.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
41.
Dostal
,
W. F.
, and
Andrews
,
J. G.
,
1981
, “
A Three-Dimensional Biomechanical Model of Hip Musculature
,”
J. Biomech.
,
14
(
11
), pp.
803
812
.
42.
Clarke
,
S. G.
,
Phillips
,
A. T. M.
, and
Bull
,
A. M. J.
,
2013
, “
Evaluating a Suitable Level of Model Complexity for Finite Element Analysis of the Intact Acetabulum
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
7
), pp.
717
724
.
43.
Morrison
,
M. L.
,
2006
, “
Birmingham Hip Resurfacing System
,”
Adv. Mater. Process.
,
164
(
10
), pp.
52
53
.http://www.asminternational.org/content/ASM/PortletImages/MPMD/Issues/MPMD16410oct06.pdf
44.
Mukherjee
,
K.
, and
Gupta
,
S.
,
2014
, “
Simulation of Tissue Differentiation Around Acetabular Cups: The Effects of Implant-Bone Relative Displacement and Polar Gap
,”
Adv. Biomech. Appl.
,
1
(
2
), pp.
95
109
.
45.
Puthumanapully
,
P. K.
,
2010
, “
Simulation of Tissue Differentiation in Uncemented Hip Implants Based on a Mechanoregulatory Hypothesis
,” Ph.D. dissertation, University of Southampton, Southampton, UK.
46.
Tarala
,
M.
,
Waanders
,
D.
,
Biemond
,
J. E.
,
Hannink
,
G.
,
Janssen
,
D.
,
Buma
,
P.
, and
Verdonschot
,
N.
,
2011
, “
The Effect of Bone Ingrowth Depth on the Tensile and Shear Strength of the Implant-Bone e-Beam Produced Interface
,”
J. Mater. Sci. Mater. Med.
,
22
(
10
), pp.
2339
2346
.
47.
Mukherjee
,
K.
, and
Gupta
,
S.
,
2017
, “
Influence of Implant Surface Texture Design on Peri-Acetabular Bone Ingrowth: A Mechanobiology Based Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
139
(
3
), p.
031006
.
48.
Huiskes
,
R.
, and
van Rietbergen
,
B.
,
1995
, “
Preclinical Testing of Total Hip Stem: The Effects of Coating Placement
,”
Clin. Orthop. Relat. Res.
,
319
, pp.
64
76
.
49.
Huiskes
,
R.
,
Weinans
,
H.
, and
van Rietbergen
,
B.
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
,
274
, pp.
124
134
.
50.
Martin
,
R. B.
,
1972
, “
Effects of Geometric Feedback in Development of Osteoporosis
,”
J. Biomech.
,
5
(
5
), pp.
447
455
.
51.
Dickinson
,
A.
,
Taylor
,
A.
, and
Browne
,
M.
,
2012
, “
Implant–Bone Interface Healing and Adaptation in Resurfacing Hip Replacement
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
9
), pp.
935
947
.
52.
Hori
,
R. Y.
, and
Lewis
,
J. L.
,
1982
, “
Mechanical Properties of the Fibrous Tissue Found at the Bone-Cement Interface Following Total Joint Replacement
,”
J. Biomed. Mater. Res.
,
16
(
6
), pp.
911
927
.
53.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
1997
, “
Optical and Mechanical Determination of Poisson's Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
,
30
(
3
), pp.
235
241
.
54.
Puthumanapully
,
P. K.
, and
Browne
,
M.
,
2011
, “
Tissue Differentiation Around a Short Stemmed Metaphyseal Loading Implant Employing a Modified Mechanoregulatory Algorithm: A Finite Element Study
,”
J. Orthop. Res.
,
29
(
5
), pp.
787
794
.
55.
Chou
,
H. Y.
, and
Müftü
,
S.
,
2013
, “
Simulation of Peri-Implant Bone Healing Due to Immediate Loading in Dental Implant Treatments
,”
J. Biomech.
,
46
(
14
), pp.
871
878
.
56.
Lacroix
,
D.
, and
Prendergast
,
P. J.
,
2002
, “
Three-Dimensional Simulation of Fracture Repair in the Human Tibia
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
5
), pp.
369
376
.
57.
Lacroix
,
D.
,
Prendergast
,
P. J.
,
Li
,
G.
, and
Marsh
,
D.
,
2002
, “
Biomechanical Model to Simulate Tissue Differentiation and Bone Regeneration: Application to Fracture Healing
,”
Med. Biol. Eng. Comput.
,
40
(
1
), pp.
14
21
.
58.
Levenston
,
M. E.
,
Beaupre
,
G. S.
,
Schurman
,
D. J.
, and
Carter
,
D. R.
,
1993
, “
Computer Simulations of Stress-Related Bone Remodelling Around Noncemented Acetabular Components
,”
J. Arthroplasty
,
8
(
6
), pp.
595
605
.
59.
Won
,
C. H.
,
Hearn
,
T. C.
, and
Tile
,
M.
,
1995
, “
Micromotion of Cementless Hemispherical Acetabular Components. Does Press-Fit Need Adjunctive Screw Fixation?
,”
J. Bone Jt. Surg. Br.
,
77B
(
3
), pp.
484
489
.http://bjj.boneandjoint.org.uk/content/jbjsbr/77-B/3/484.full.pdf
60.
Stocks
,
G. W.
,
Freeman
,
M. A.
, and
Evans
,
S. J.
,
1995
, “
Acetabular Cup Migration. Prediction of Aseptic Loosening
,”
J. Bone Jt. Surg. Br.
,
77B
(
6
), pp.
853
861
.http://bjj.boneandjoint.org.uk/content/jbjsbr/77-B/6/853.full.pdf
61.
Claes
,
L. E.
,
Heigele
,
C. A.
,
Neidlinger-Wilke
,
C.
,
Kaspar
,
D.
,
Seidl
,
W.
,
Margevicius
,
K. J.
, and
Augat
,
P.
,
1998
, “
Effects of Mechanical Factors on the Fracture Healing Process
,”
Clin. Orthop. Relat. Res.
,
355
, pp.
S132
S147
.
62.
Claes
,
L.
,
Augat
,
P.
,
Suger
,
G.
, and
Wilke
,
H. J.
,
1997
, “
Influence of Size and Stability of the Osteotomy Gap on the Success of Fracture Healing
,”
J. Orthop. Res.
,
15
(
4
), pp.
577
584
.
63.
Prendergast
,
P. J.
,
Huiskes
,
R.
, and
Søballe
,
K.
,
1997
, “
Biophysical Stimuli on Cells During Tissue Differentiation at Implant Interfaces
,”
J. Biomech.
,
30
(
6
), pp.
539
548
.
64.
Hollister
,
S. J.
,
Guldberg
,
R. E.
,
Kuelske
,
C. L.
,
Caldwell
,
N. J.
,
Richards
,
M.
, and
Goldstein
,
S. A.
,
1996
, “
Relative Effects of Wound Healing and Mechanical Stimulus on Early Bone Response to Porous-Coated Implants
,”
J. Orthop. Res.
,
14
(
4
), pp.
654
662
.
65.
Puleo
,
D. A.
, and
Nanci
,
A.
,
1999
, “
Understanding and Controlling the Bone-Implant Interface
,”
Biomaterials
,
20
(
23–24
), pp.
2311
2321
.
66.
Jasty
,
M.
,
Bragdon
,
C. R.
,
Burke
,
D.
,
O'Connor
,
D.
,
Lowenstein
,
J.
, and
Harris
,
W. H.
,
1997
, “
In Vivo Skeletal Responses to Porous-Surfaced Implants Subjected to Small Induced Motions
,”
J. Bone Jt. Surg. Am.
,
79
(
5
), pp.
707
714
.
67.
Jasty
,
M.
,
Bragdon
,
C. R.
,
Maloney
,
W. J.
,
Haire
,
T.
, and
Harris
,
W. H.
,
1991
, “
Ingrowth of Bone in Failed Fixation of Porous-Coated Femoral Components
,”
J. Bone Jt. Surg. Am.
,
73
(
9
), pp.
1331
1337
.
68.
Bragdon
,
C. R.
,
Jasty
,
M.
,
Greene
,
M.
,
Rubash
,
H. E.
, and
Harris
,
W. H.
,
2004
, “
Biologic Fixation of Total Hip Implants: Insights Gained From a Series of Canine Studies
,”
J. Bone Jt. Surg. Am.
,
86
(
Suppl. 2
), pp.
105
117
.
You do not currently have access to this content.