In this study, statistical models are developed for modeling uncertain heterogeneous permeability and porosity in tumors, and the resulting uncertainties in pressure and velocity fields during an intratumoral injection are quantified using a nonintrusive spectral uncertainty quantification (UQ) method. Specifically, the uncertain permeability is modeled as a log-Gaussian random field, represented using a truncated Karhunen–Lòeve (KL) expansion, and the uncertain porosity is modeled as a log-normal random variable. The efficacy of the developed statistical models is validated by simulating the concentration fields with permeability and porosity of different uncertainty levels. The irregularity in the concentration field bears reasonable visual agreement with that in MicroCT images from experiments. The pressure and velocity fields are represented using polynomial chaos (PC) expansions to enable efficient computation of their statistical properties. The coefficients in the PC expansion are computed using a nonintrusive spectral projection method with the Smolyak sparse quadrature. The developed UQ approach is then used to quantify the uncertainties in the random pressure and velocity fields. A global sensitivity analysis is also performed to assess the contribution of individual KL modes of the log-permeability field to the total variance of the pressure field. It is demonstrated that the developed UQ approach can effectively quantify the flow uncertainties induced by uncertain material properties of the tumor.

References

References
1.
Swartz
,
M. A.
, and
Fleury
,
M. E.
,
2007
, “
Interstitial Flow and Its Effects in Soft Tissues
,”
Annu. Rev. Biomed. Eng.
,
9
(
1
), pp.
229
256
.
2.
Debbage
,
P.
,
2009
, “
Targeted Drugs and Nanomedicine: Present and Future
,”
Curr. Pharm. Des.
,
15
(
2
), pp.
153
172
.
3.
Salloum
,
M.
,
Ma
,
R.
,
Weeks
,
D.
, and
Zhu
,
L.
,
2008
, “
Controlling Nanoparticle Delivery in Magnetic Nanoparticle Hyperthermia for Cancer Treatment: Experimental Study in Agarose Gel
,”
Int. J. Hyperthermia
,
24
(
4
), pp.
337
345
.
4.
Hilger
,
I.
,
Hergt
,
R.
, and
Kaiser
,
W.
,
2005
, “
Towards Breast Cancer Treatment by Magnetic Heating
,”
J. Mag. Mag. Mater.
,
293
(
1
), pp.
314
319
.
5.
Rand
,
R.
,
Snow
,
H.
,
Elliott
,
D.
, and
Snyder
,
M.
,
1981
, “
Thermomagnetic Surgery for Cancer
,”
Appl. Biochem. Biotechnol.
,
6
(
4
), pp.
265
272
.
6.
Rand
,
R.
,
Snow
,
H.
, and
Brown
,
W.
,
1982
, “
Thermomagnetic Surgery for Cancer
,”
J. Surg. Res.
,
33
(
3
), pp.
177
183
.
7.
Hase
,
M.
,
Sako
,
M.
,
Fujii
,
M.
,
Ueda
,
E.
,
Nagae
,
T.
,
Shimizu
,
T.
,
Hirota
,
S.
, and
Kono
,
M.
,
1989
, “
Experimental Study of Embolo-Hyperthermia for the Treatment of Liver Tumors by Induction Heating to Ferromagnetic Particles Injected Into Tumor Tissue
,”
Nihon Igaku Hoshasen Gakkai Zasshi
,
49
(
9
), pp.
1171
1173
.https://www.ncbi.nlm.nih.gov/labs/articles/2587196
8.
Wust
,
P.
,
Gneveckow
,
U.
,
Johannsen
,
M.
,
Bohmer
,
D.
,
Henkel
,
T.
,
Kahmann
,
F.
,
Sehouli
,
J.
,
Felix
,
R.
,
Ricke
,
J.
, and
Jordan
,
A.
,
2006
, “
Magnetic Nanoparticles for Interstitial Thermotherapy–Feasibility, Tolerance and Achieved Temperatures
,”
Int. J. Hyperthermia
,
22
(
8
), pp.
673
685
.
9.
Khaled
,
A.-R. A.
, and
Vafai
,
K.
,
2003
, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
,
46
(
26
), pp.
4989
5003
.
10.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1990
, “
Transport of Fluid and Macromolecules in Tumors (II): Role of Heterogeneous Perfusion and Lymphatics
,”
Microvasc. Res.
,
40
(
2
), pp.
246
263
.
11.
Wang
,
C.-H.
, and
Li
,
J.
,
1998
, “
Three-Dimensional Simulation of IgG Delivery to Tumors
,”
Chem. Eng. Sci.
,
53
(
20
), pp.
3579
3600
.
12.
Zhao
,
J.
,
Salmon
,
H.
, and
Sarntinoranont
,
M.
,
2007
, “
Effect of Heterogeneous Vasculature on Interstitial Transport Within a Solid Tumor
,”
Microvasc. Res.
,
73
(
3
), pp.
224
236
.
13.
Pishko
,
G. L.
,
Astary
,
G. W.
,
Mareci
,
T. H.
, and
Sarntinoranont
,
M.
,
2011
, “
Sensitivity Analysis of an Image-Based Solid Tumor Computational Model With Heterogeneous Vasculature and Porosity
,”
Ann. Biomed. Eng.
,
39
(
9
), pp.
2360
2373
.
14.
Sefidgar
,
M.
,
Soltani
,
M.
,
Raahemifar
,
K.
,
Bazmara
,
H.
,
Nayinian
,
S. M. M.
, and
Bazargan
,
M.
,
2014
, “
Effect of Tumor Shape, Size, and Tissue Transport Properties on Drug Delivery to Solid Tumors
,”
J. Biol. Eng.
,
8
(
1
), p.
12
.
15.
Xiu
,
D.
,
Lucor
,
D.
,
Su
,
C.
, and
Karniadakis
,
G.
,
2002
, “
Stochastic Modeling of Flow Structure Interactions Using Generalized Polynomial Chaos
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
51
59
.
16.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2002
, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
17.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2003
, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
187
(
1
), pp.
137
167
.
18.
Le Maître
,
O.
,
Knio
,
O.
,
Najm
,
H.
, and
Ghanem
,
R.
,
2004
, “
Uncertainty Propagation Using Wiener-Haar Expansions
,”
J. Comput. Phys.
,
197
(
1
), pp.
28
57
.
19.
Le Maître
,
O.
,
Najm
,
H.
,
Ghanem
,
R.
, and
Knio
,
O.
,
2004
, “
Multi-Resolution Analysis of Wiener-Type Uncertainty Propagation Schemes
,”
J. Comput. Phys.
,
197
(
2
), pp.
502
531
.
20.
Le Maître
,
O.
,
Mathelin
,
L.
,
Knio
,
O.
, and
Hussaini
,
M.
,
2010
, “
Asynchronous Time Integration for Polynomial Chaos Expansion of Uncertain Periodic Dynamics
,”
Discrete Contin. Dyn. Syst.
,
28
(
1
), pp.
199
226
.
21.
Le Maître
,
O. P.
, and
Knio
,
O. M.
,
2010
,
Spectral Methods for Uncertainty Quantification
: With Applications to Computational Fluid Dynamics,
Springer
,
New York
.
22.
Hosder
,
S.
,
Walters
,
R.
, and
Perez
,
R.
,
2006
, “
A Non-Intrusive Polynomial Chaos Method for Uncertainty Propagation in CFD Simulations
,”
AIAA
Paper No. 2006-891.
23.
Babuška
,
I.
,
Nobile
,
F.
, and
Tempone
,
R.
,
2007
, “
A Stochastic Collocation Method for Elliptic Partial Differential Equations With Random Input Data
,”
SIAM J. Numer. Anal.
,
45
(
3
), pp.
1005
1034
.
24.
Alexanderian
,
A.
,
Winokur
,
J.
,
Sraj
,
I.
,
Srinivasan
,
A.
,
Iskandarani
,
M.
,
Thacker
,
W.
, and
Knio
,
O.
,
2012
, “
Global Sensitivity Analysis in Ocean Global Circulation Models: A Sparse Spectral Projection Approach
,”
Comput. Geosci.
,
16
(
3
), pp.
757
778
.
25.
Smolyak
,
S. A.
,
1963
, “
Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions
,”
Dokl. Akad. Nauk SSSR
,
4
, pp.
240
243
.
26.
Liu
,
J.
,
2001
, “
Uncertainty Analysis for Temperature Prediction of Biological Bodies Subject to Randomly Spatial Heating
,”
J. Biomech.
,
34
(
12
), pp.
1637
1642
.
27.
Rabin
,
Y.
,
2003
, “
A General Model for the Propagation of Uncertainty in Measurements Into Heat Transfer Simulations and Its Application to Cryosurgery
,”
Cryobiology
,
46
(
2
), pp.
109
120
.
28.
Turner
,
T. E.
,
Schnell
,
S.
, and
Burrage
,
K.
,
2004
, “
Stochastic Approaches for Modelling In Vivo Reactions
,”
Comput. Biol. Chem.
,
28
(
3
), pp.
165
178
.
29.
Deng
,
Z.-S.
, and
Liu
,
J.
,
2002
, “
Monte Carlo Method to Solve Multidimensional Bioheat Transfer Problem
,”
Numer. Heat Transfer, Part B
,
42
(
6
), pp.
543
567
.
30.
Ghanem
,
R.
, and
Dham
,
S.
,
1998
, “
Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media
,”
Transp. Porous Media
,
32
(
3
), pp.
239
262
.
31.
Saad
,
G.
, and
Ghanem
,
R.
,
2009
, “
Characterization of Reservoir Simulation Models Using a Polynomial Chaos-Based Ensemble Kalman Filter
,”
Water Resour. Res.
,
45
(
4
), p. W04417.
32.
Sobol
,
I.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
33.
Sobol
,
I.
,
1990
, “
On Sensitivity Estimation for Nonlinear Mathematical Models
,”
Mat. Model.
,
2
(
1
), pp.
112
118
.http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mm&paperid=2320&option_lang=eng
34.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
35.
Crestaux
,
T.
,
Maitre
,
O. L.
, and
Martinez
,
J.-M.
,
2009
, “
Polynomial Chaos Expansion for Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
94
(
7
), pp.
1161
1172
.
36.
Ma
,
R.
,
Su
,
D.
, and
Zhu
,
L.
,
2012
, “
Multiscale Simulation of Nanopartical Transport in Deformable Tissue During an Infusion Process in Hyperthermia Treatments of Cancers
,”
Nanoparticle Heat Transfer and Fluid Flow
(Computational and Physical Processes in Mechanics and Thermal Science Series), Vol.
4
,
W. J.
Minkowycz
,
E.
Sparrow
, and
J. P.
Abraham
, eds.,
CRC Press
,
Boca Raton, FL
.
37.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
38.
Mercer
,
J.
,
1909
, “
Functions of Positive and Negative Type, and Their Connection With the Theory of Integral Equations
,”
Philos. Trans. R. Soc. London Ser. A
,
209
(
441–458
), pp.
415
446
.
39.
Xiu
,
D. B.
,
2010
,
Numerical Methods for Stochastic Computations
,
Princeton University Press
,
Princeton, NJ
.
40.
Heiss
,
F.
, and
Winschel
,
V.
,
2008
, “
Likelihood Approximation by Numerical Integration on Sparse Grids
,”
J. Econometrics
,
144
(
1
), pp.
62
80
.
41.
Sobol
,
I.
,
Tarantola
,
S.
,
Gatelli
,
D.
,
Kucherenko
,
S.
, and
Mauntz
,
W.
,
2007
, “
Estimating the Approximation Error When Fixing Unessential Factors in Global Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
92
(
7
), pp.
957
960
.
You do not currently have access to this content.