Computational models of diarthrodial joints serve to inform the biomechanical function of these structures, and as such, must be supplied appropriate inputs for performance that is representative of actual joint function. Inputs for these models are sourced from both imaging modalities as well as literature. The latter is often the source of mechanical properties for soft tissues, like ligament stiffnesses; however, such data are not always available for all the soft tissues nor is it known for patient-specific work. In the current research, a method to improve the ligament stiffness definition for a computational foot/ankle model was sought with the greater goal of improving the predictive ability of the computational model. Specifically, the stiffness values were optimized using artificial neural networks (ANNs); both feedforward and radial basis function networks (RBFNs) were considered. Optimal networks of each type were determined and subsequently used to predict stiffnesses for the foot/ankle model. Ultimately, the predicted stiffnesses were considered reasonable and resulted in enhanced performance of the computational model, suggesting that artificial neural networks can be used to optimize stiffness inputs.

References

References
1.
Liacouras
,
P. C.
, and
Wayne
,
J. S.
,
2007
, “
Computational Modeling to Predict Function of Joints: Application to the Lower Leg With Simulation of Two Cadaver Studies
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
811
817
.
2.
Spratley
,
E. M.
,
Matheis
,
E. A.
,
Hayes
,
C. W.
,
Adelaar
,
R. S.
, and
Wayne
,
J. S.
,
2013
, “
Validation of a Population of Patient-Specific Adult Acquired Flatfoot Deformity Models
,”
J. Orthop. Res.
,
31
(
12
), pp.
1861
1868
.
3.
Lu
,
Y.
,
Pulasani
,
P. R.
,
Derakhshani
,
R.
, and
Guess
,
T. M.
,
2013
, “
Application of Neural Networks for the Prediction of Cartilage Stress in a Musculoskeletal System
,”
Biomed. Signal Process. Control
,
8
(
6
), pp.
475
482
.
4.
Iaquinto
,
J. M.
, and
Wayne
,
J. S.
,
2011
, “
Effects of Surgical Correction for the Treatment of Adult Acquired Flatfoot Deformity: A Computational Investigation
,”
J. Orthop. Res.
,
29
(
7
), pp.
1047
1054
.
5.
Cheung
,
J. T.
,
Zhang
,
M.
,
Leung
,
A. K.
, and
Fan
,
Y. B.
,
2005
, “
Three-Dimensional Finite Element Analysis of the Foot During Standing—A Material Sensitivity Study
,”
J. Biomech.
,
38
(
5
), pp.
1045
1054
.
6.
Anderson
,
D. D.
,
Goldsworthy
,
J. K.
,
Shivanna
,
K.
,
Grosland
,
N. M.
,
Pedersen
,
D. R.
,
Thomas
,
T. P.
,
Tochigi
,
Y.
,
Marsh
,
J. L.
, and
Brown
,
T. D.
,
2006
, “
Intra-Articular Contact Stress Distributions at the Ankle Throughout Stance Phase-Patient-Specific Finite Element Analysis as a Metric of Degeneration Propensity
,”
Biomech. Model. Mechanobiol.
,
5
(
2–3
), pp.
82
89
.
7.
Sowmianarayanan
,
S.
,
Chandrasekaran
,
A.
, and
Kumar
,
R. K.
,
2008
, “
Finite Element Analysis of a Subtrochanteric Fractured Femur With Dynamic Hip Screw, Dynamic Condylar Screw, and Proximal Femur Nail Implants—A Comparative Study
,”
Proc. Inst. Mech. Eng. Part H
,
222
(
1
), pp.
117
127
.
8.
Spratley
,
E. M.
, and
Wayne
,
J. S.
,
2011
, “
Computational Model of the Human Elbow and Forearm: Application to Complex Varus Instability
,”
Ann. Biomed. Eng.
,
39
(
3
), pp.
1084
1091
.
9.
Majors
,
B. J.
, and
Wayne
,
J. S.
,
2011
, “
Development and Validation of a Computational Model for Investigation of Wrist Biomechanics
,”
Ann. Biomed. Eng.
,
39
(
11
), pp.
2807
2815
.
10.
Elmore
,
K. A.
, and
Wayne
,
J. S.
,
2013
, “
Soft Tissue Structures Resisting Anterior Instability in a Computational Glenohumeral Joint Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
7
), pp.
781
789
.
11.
Deland
,
J. T.
,
2008
, “
Adult-Acquired Flatfoot Deformity
,”
J. Am. Acad. Orthop. Surg.
,
16
(
7
), pp.
399
406
.
12.
Deland
,
J. T.
,
2012
, “
Spring Ligament Complex and Flatfoot Deformity: Curse or Blessing?
,”
Foot Ankle Int.
,
33
(
3
), pp.
239
243
.
13.
Williams
,
G.
,
Widnall
,
J.
,
Evans
,
P.
, and
Platt
,
S.
,
2013
, “
MRI Features Most Often Associated With Surgically Proven Tears of the Spring Ligament Complex
,”
Skeletal Radiol.
,
42
(
7
), pp.
969
973
.
14.
Vulcano
,
E.
,
Deland
,
J. T.
, and
Ellis
,
S. J.
,
2013
, “
Approach and Treatment of the Adult Acquired Flatfoot Deformity
,”
Curr. Rev. Musculoskeletal Med.
,
6
(
4
), pp.
294
303
.
15.
Deland
,
J. T.
,
de Asla
,
R. J.
,
Sung
,
I. H.
,
Ernberg
,
L. A.
, and
Potter
,
H. G.
,
2005
, “
Posterior Tibial Tendon Insufficiency: Which Ligaments Are Involved?
,”
Foot Ankle Int.
,
26
(
6
), pp.
427
435
.
16.
Younger
,
A. S.
,
Sawatzky
,
B.
, and
Dryden
,
P.
,
2005
, “
Radiographic Assessment of Adult Flatfoot
,”
Foot Ankle Int.
,
26
(
10
), pp.
820
825
.
17.
Louie
,
P. K.
,
Sangeorzan
,
B. J.
,
Fassbind
,
M. J.
, and
Ledoux
,
W. R.
,
2014
, “
Talonavicular Joint Coverage and Bone Morphology Between Different Foot Types
,”
J. Orthop. Res.
,
32
(
7
), pp.
958
966
.
18.
Conti
,
M. S.
,
Ellis
,
S. J.
,
Chan
,
J. Y.
,
Do
,
H. T.
, and
Deland
,
J. T.
,
2015
, “
Optimal Position of the Heel Following Reconstruction of the Stage II Adult-Acquired Flatfoot Deformity
,”
Foot Ankle Int.
,
36
(
8
), pp.
919
927
.
19.
Draves
,
D. J.
,
1986
,
Anatomy of the Lower Extremity
,
Williams & Wilkins
,
Baltimore, MD
.
20.
Arangio
,
G. A.
,
Wasser
,
T.
, and
Rogman
,
A.
,
2006
, “
Radiographic Comparison of Standing Medial Cuneiform Arch Height in Adults With and Without Acquired Flatfoot Deformity
,”
Foot Ankle Int.
,
27
(
8
), pp.
636
638
.
21.
Spratley
,
E. M.
,
Matheis
,
E. A.
,
Hayes
,
C. W.
,
Adelaar
,
R. S.
, and
Wayne
,
J. S.
,
2015
, “
Effects of Degrees of Surgical Correction for Flatfoot Deformity in Patient-Specific Computational Models
,”
Ann. Biomed. Eng.
,
43
(
8
), pp.
1947
1956
.
22.
Spratley
,
E. M.
,
2013
, “
Patient-Specific Modeling of Adult Acquired Flatfoot Deformity Before and After Surgery
,”
Ph.D. thesis
, Virginia Commonwealth University, Richmond, VA.http://scholarscompass.vcu.edu/etd/3278/
23.
Hassoun
,
M. H.
,
1995
,
Fundamentals of Artificial Neural Networks
,
The MIT Press
,
Cambridge, MA
.
24.
Haykin
,
S.
,
2009
,
Neural Networks and Learning Machines
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
25.
Specht
,
D. F.
,
1991
, “
A General Regression Neural Network
,”
IEEE Trans. Neural Networks
,
2
(
6
), pp.
568
576
.
26.
Mahfouf
,
M.
,
2006
,
Intelligent Systems Modeling and Decision Support in Bioengineering
,
Artech House
,
Norwood, MA
.
27.
Galushkin
,
A. I.
,
2007
,
Neural Networks Theory
,
Springer Science & Business Media
,
Berlin
.
28.
Agatonovic-Kustrin
,
S.
, and
Beresford
,
R.
,
2000
, “
Basic Concepts of Artificial Neural Network (ANN) Modeling and Its Application in Pharmaceutical Research
,”
J. Pharm. Biomed. Anal.
,
22
(
5
), pp.
717
727
.
29.
Bas
,
B.
,
Ozgonenel
,
O.
,
Ozden
,
B.
,
Bekcioglu
,
B.
,
Bulut
,
E.
, and
Kurt
,
M.
,
2012
, “
Use of Artificial Neural Network in Differentiation of Subgroups of Temporomandibular Internal Derangements: A Preliminary Study
,”
J. Oral Maxillofac. Surg.
,
70
(
1
), pp.
51
59
.
30.
Taghavifar
,
H.
, and
Mardani
,
A.
,
2014
, “
Application of Artificial Neural Networks for the Prediction of Traction Performance Parameters
,”
J. Saudi Soc. Agric. Sci.
,
13
(1), pp.
35
43
.
31.
Basheer
,
I. A.
, and
Hajmeer
,
M.
,
2000
, “
Artificial Neural Networks: Fundamentals, Computing, Design, and Application
,”
J. Microbiol. Methods
,
43
(
1
), pp.
3
31
.
32.
Massie
,
D. D.
, and
Curtiss
,
P. S.
,
2001
, “
Neural Network Fundamentals for Scientists and Engineers
,” International Conference on Efficiency, Costs, Optimization, Simulations, and Environmental Impact of Energy Systems (
ECOS
), Istanbul, Turkey, July 4–6, p. 123.https://pdfs.semanticscholar.org/b45c/a18c5ccceecfad3deb80486ea5cea8e1f575.pdf
33.
Ahmed
,
F. E.
,
2005
, “
Artificial Neural Networks for Diagnosis and Survival Prediction in Colon Cancer
,”
Mol. Cancer
,
4
(
1
), p.
29
.
34.
Eskinazi
,
I.
, and
Fregly
,
B. J.
,
2013
, “
Surrogate Knee Contact Modeling Using Artificial Neural Networks
,”
ASME
Paper No. SBC2013-14581.
35.
Kaufman
,
J. J.
,
Chiabrera
,
A.
,
Hatem
,
M.
,
Hakim
,
N. Z.
,
Figueiredo
,
M.
,
Nasser
,
P.
,
Lattuga
,
S.
,
Pilla
,
A. A.
, and
Siffert
,
R. S.
,
1990
, “
A Neural Network Approach for Bone Fracture Healing Assessment
,”
IEEE Eng. Med. Biol. Mag.
,
9
(
3
), pp.
23
30
.
36.
Rae
,
S. A.
,
Wang
,
W. J.
, and
Partridge
,
D.
,
1999
, “
Artificial Neural Networks: A Potential Role in Osteoporosis
,”
J. R. Soc. Med.
,
92
(
3
), pp.
119
122
.
37.
Lippman
,
R. P.
,
1987
, “
An Introduction to Computing With Neural Nets
,”
IEEE ASSP Mag.
,
3
, pp.
4
22
.
38.
Lavrenko
,
V.
,
2015
, “
Backpropagation: How It Works
,” Introductory Applied Machine Learning (Class Lecture), University of Edinburgh, Edinburgh, UK.
39.
Lavrenko
,
V.
,
2015
, “
Neural Networks 11: Backpropagation in Detail
,” Introductory Applied Machine Learning (Class Lecture), University of Edinburgh, Edinburgh, UK.
40.
Abu-Mostafa
,
Y.
,
2012
, “
Lecture 16: Radial Basis Functions
,” Learning From Data, Introductory Machine Learning Course (Class Lecture), California Institute of Technology, Pasadena, CA.
41.
Beale
,
M. H.
,
Hagan
,
M. T.
, and
Demuth
,
H. B.
,
2013
, “
Neural Network Toolbox™, User's Guide R2013b
,” MathWorks, Natick, MA.
42.
Wettschereck
,
D.
, and
Dietterich
,
T.
,
1992
, “
Improving the Performance of Radial Basis Function Networks by Learning Center Locations
,”
Advances in Neural Information Processing Systems 4
,
Morgan Kaufmann
,
San Francisco, CA
.
43.
Masters
,
T.
,
2013
,
Assessing and Improving Prediction and Classification
,
Timothy Masters
, Fort Collins, CO.
44.
Heath
,
G.
, 2015, “
Tutorial on Neural Net Crossvalidation Design
,” MathWorks, Natick, MA, accessed Feb. 8,
2016
, https://www.mathworks.com/matlabcentral/newsreader/view_thread/340857
45.
Sarrafian
,
S. K.
,
1993
,
Anatomy of the Foot and Ankle: Descriptive, Topographic, Functional
,
Lippincott Williams & Wilkins
,
Philadelphia, PA
.
46.
Ewing
,
J. A.
,
Kaufman
,
M. K.
,
Hutter
,
E. E.
,
Granger
,
J. F.
,
Beal
,
M. D.
,
Piazza
,
S. J.
, and
Siston
,
R. A.
,
2016
, “
Estimating Patient-Specific Soft-Tissue Properties in a TKA Knee
,”
J. Orthop. Res.
,
34
(
3
), pp.
435
443
.
You do not currently have access to this content.