Computational modeling is critical to medical device development and has grown in its utility for predicting device performance. Additionally, there is an increasing trend to use absorbable polymers for the manufacturing of medical devices. However, computational modeling of absorbable devices is hampered by a lack of appropriate constitutive models that capture their viscoelasticity and postyield behavior. The objective of this study was to develop a constitutive model that incorporated viscoplasticity for a common medical absorbable polymer. Microtensile bars of poly(L-lactide) (PLLA) were studied experimentally to evaluate their monotonic, cyclic, unloading, and relaxation behavior as well as rate dependencies under physiological conditions. The data were then fit to a viscoplastic flow evolution network (FEN) constitutive model. PLLA exhibited rate-dependent stress–strain behavior with significant postyield softening and stress relaxation. The FEN model was able to capture these relevant mechanical behaviors well with high accuracy. In addition, the suitability of the FEN model for predicting the stress–strain behavior of PLLA medical devices was investigated using finite element (FE) simulations of nonstandard geometries. The nonstandard geometries chosen were representative of generic PLLA cardiovascular stent subunits. These finite element simulations demonstrated that modeling PLLA using the FEN constitutive relationship accurately reproduced the specimen’s force–displacement curve, and therefore, is a suitable relationship to use when simulating stress distribution in PLLA medical devices. This study demonstrates the utility of an advanced constitutive model that incorporates viscoplasticity for simulating PLLA mechanical behavior.

References

References
1.
Ma
,
D.
,
Dargush
,
G.
,
Natarajan
,
S.
,
Levy
,
E.
,
Siddigui
,
A.
, and
Meng
,
H.
,
2012
, “
Computer Modeling of Deployment and Mechanical Expansion of Neurovascular Flow Diverter in Patient-Specific Intracranial Aneurysms
,”
J. Biomech.
,
45
(
13
), pp.
2256
2263
.
2.
Kruger
,
K.
,
Tikekar
,
N.
,
Heiner
,
A.
,
Lannutti
,
J.
,
Callaghan
,
J.
, and
Brown
,
T.
,
2014
, “
Modeling Polyethylene Wear Acceleration Due to Femoral Head Dislocation Damage
,”
J. Arthroplasty
,
29
(
8
), pp.
1653
1657
.
3.
Ovcharenko
,
E.
,
Klyshnikov
,
K.
,
Yuzhalin
,
A.
,
Savrasov
,
G.
,
Kokov
,
A.
,
Batranin
,
A.
,
Ganyukov
,
V.
, and
Kudryavtseva
,
Y.
,
2016
, “
Modeling of Transcatheter Aortic Valve Replacement: Patient Specific versus General Approaches Based on Finite Element Analysis
,”
Comput. Biol. Med.
,
69
, pp.
29
36
.
4.
Center for Devices and Radiological Health
,
2010
, “
Guidance for Industry and FDA Staff: Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems
,” U.S. Food and Drug Administration, Silver Spring, MD.
5.
Lyu
,
S.
, and
Untereker
,
D.
,
2009
, “
Degradability of Polymers for Implantable Biomedical Devices
,”
Int. J. Mol. Sci.
,
10
(
9
), pp.
4033
4065
.
6.
Middleton
,
J.
, and
Tipton
,
A.
,
2000
, “
Synthetic Biodegradable Polymers as Orthopedic Devices
,”
Biomaterials
,
21
(
23
), pp.
2335
2346
.
7.
Oberhauser
,
J.
,
Hossainy
,
S.
, and
Rapoza
,
R.
,
2009
, “
Design Principles and Performance of Bioresorbable Polymeric Vascular Scaffolds
,”
EuroIntervention
,
5
, pp.
F15
F22
.
8.
Yamadi
,
S.
, and
Kobayashi
,
S.
,
2009
, “
Effects of Strain Rate on the Mechanical Properties of Tricalcium Phosphate/Poly(L-Lactide) Composites
,”
J. Mater. Sci.: Mater. Med.
,
20
(
1
), pp.
67
74
.
9.
Bobel
,
A. L.
,
Lohfeld
,
S.
,
Shirazi
,
R. N.
, and
McHugh
,
P. E.
,
2016
, “
Experimental Mechanical Testing of Poly (L-Lactide) (PLLA) to Facilitate Predegradation characteristics for Application in Cardiovascular Stenting
,”
Polym. Test.
,
54
, pp.
150
158
.
10.
Smit
,
T. H.
,
Engels
,
T. A. P.
,
Wuisman
,
P. I. J. M.
, and
Govaert
,
L. E.
,
2008
, “
Time-Dependent Mechanical Strength of 70/30 Poly(L, DL-Lactide)
,”
Spine
,
33
(
1
), pp.
14
18
.
11.
Smit
,
T. H.
,
Engels
,
T. A. P.
,
Sontjens
,
S. H. M.
, and
Govaert
,
L. E.
,
2010
, “
Time-Dependent Failure in Load-Bearing Polymers: A Potential Hazard in Structural Applications of Polylactides
,”
J. Mater. Sci.: Mater. Med.
,
21
(
3
), pp.
871
878
.
12.
Dreher
,
M. L.
,
Nagaraja
,
S.
,
Bui
,
H.
, and
Hong
,
D.
,
2014
, “
Characterization of Load Dependent Creep Behavior in Medically Relevant Absorbable Polymers
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
470
479
.
13.
Bergstrom
,
J. S.
, and
Hayman
,
D.
,
2015
, “
An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications
,”
Ann. Biomed. Eng.
,
44
(2), pp.
330
340
.
14.
Achour
,
N.
,
Chatzigeorgiou
,
G.
,
Meraghni
,
F.
,
Chemisky
,
Y.
, and
Fitoussi
,
J.
,
2015
, “
Implicit Implementation and Consistent Tangent Modulus of a Viscoplastic Model for Polymers
,”
Int. J. Mech. Sci.
,
103
, pp.
297
305
.
15.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
931
954
.
16.
Hasan
,
O.
, and
Boyce
,
M.
,
1995
, “
A Constitutive Model for the Nonlinear Viscoelastic Viscoplastic Behavior of Glassy Polymers
,”
Polym. Eng. Sci.
,
35
(
4
), pp.
331
344
.
17.
Drozdov
,
A.
, and
Christiansen
,
J. D.
,
2007
, “
Cyclic Viscoplasticity of Thermoplastic Elastomers
,”
Acta Mech.
,
194
(
1
), pp.
47
65
.
18.
Frank
,
G. J.
, and
Brockman
,
R. A.
,
2001
, “
A Viscoelastic–Viscoplastic Constitutive Model for Glassy Polymers
,”
Int. J. Solids Struct.
,
38
(
30
), pp.
5149
5164
.
19.
Van Breemen
,
L. C.
,
Engels
,
T. A.
,
Klompen
,
E. T.
,
Senden
,
D. J.
, and
Govaert
,
L. E.
,
2012
, “
Rate‐ and Temperature‐ Dependent Strain Softening in Solid Polymers
,”
J. Polym. Sci. Part B: Polym. Phys.
,
50
(
24
), pp.
1757
1771
.
20.
Soares
,
J. S.
,
Moore
,
J. E.
, and
Rajagopal
,
K. R.
,
2008
, “
Constitutive Framework for Biodegradable Polymers With Applications to Biodegradable Stents
,”
ASAIO J.
,
54
(
3
), pp.
295
301
.
21.
Hayman
,
D.
,
Bergerson
,
C.
,
Miller
,
S.
,
Moreno
,
M.
, and
Moore
,
J. E.
,
2014
, “
The Effect of Static and Dynamic Loading on Degradation of PLLA Stent Fibers
,”
ASME J. Biomech. Eng.
,
136
(
8
), p. 081006.
22.
Khan
,
K. A.
, and
El-Sayed
,
T.
,
2013
, “
A Phenomenological Constitutive Model for the Nonlinear Viscoelastic Responses of Biodegradable Polymers
,”
Acta Mech.
,
224
(
2
), pp.
287
305
.
23.
Sontjens
,
S. H. M.
,
Engels
,
T. A. P.
,
Smit
,
T. H.
, and
Govaert
,
L. E.
,
2012
, “
Time-Dependent Failure of Amorphous Poly-D,L-Lactide: Influence of Molecular Weight
,”
J. Mech. Behav. Biomed. Mater.
,
13
, pp.
69
77
.
24.
Eswaran
,
S. K.
,
Kelley
,
J. A.
,
Bergstrom
,
J. S.
, and
Giddings
,
V. L.
,
2011
, “
Material Modeling of Polylactide
,”
SIMULIA Customer Conference
, Barcelona, Spain, May 17–19, pp.
1
11
.http://imechanica.org/files/material-modeling-of-polylactide-2011.pdf
25.
Vieira
,
A. F.
,
Guedes
,
R. M.
, and
Tita
,
V.
,
2013
, “
Reliability in Ecodesign of Interior Parts in Aerospace and Automobile Industry Using Biodegrable Thermoplastics
,” 22nd International Congress of Mechanical Engineering (COBEM), Ribeirão Preto, Brazil, Nov. 3–7, pp. 6348–6359.
26.
Pauck
,
R.
, and
Reddy
,
B.
,
2015
, “
Computational Analysis of the Radial Mechanical Performance of PLLA Coronary Artery Stents
,”
Med. Eng. Phys.
,
37
(
1
), pp.
7
12
.
27.
Debusschere
,
N.
,
Segers
,
P.
,
Dubruel
,
P.
,
Verhegghe
,
B.
, and
De Beule
,
M.
,
2015
, “
A Finite Element Strategy to Investigate the Free Expansion Behavior of a Biodegradable Polymeric Stent
,”
J. Biomech.
,
48
(
10
), pp.
2012
2018
.
28.
Gilchrist
,
C. L.
,
Xia
,
J. Q.
,
Setton
,
L. A.
, and
Hsu
,
E. W.
,
2004
, “
High-Resolution Determination of Soft Tissue Deformations Using MRI and First-Order Texture Correlation
,”
IEEE Trans. Med. Imaging
,
23
(
5
), pp.
546
553
.
29.
Gilchrist
,
C. L.
,
Witvoet-Braam
,
S. W.
,
Guilak
,
F.
, and
Setton
,
L. A.
,
2007
, “
Measurement of Intracellular Strain on Deformable Substrates With Texture Correlation
,”
J. Biomech.
,
40
(
4
), pp.
786
794
.
30.
Reedlunn
,
B.
,
Daly
,
S.
,
Hector
,
L.
,
Zavattieri
,
P.
, and
Shaw
,
J.
,
2013
, “
Tips and Tricks for Characterizing Shape Memory Wire Part 5: Full-Field Strain Measurement by Digital Image Correlation
,”
Exp. Tech.
,
37
(
3
), pp.
62
78
.
31.
Lu
,
H.
, and
Cary
,
P. D.
,
2000
, “
Deformation Measurements by Digital Image Correlation: Implementation of a Second-Order Displacement Gradient
,”
Exp. Mech.
,
40
(
4
), pp.
393
400
.
32.
Vendroux
,
G.
, and
Knauss
,
W. G.
,
1998
, “
Submicron Deformation Field Measurements—Part 2: Improved Digital Image Correlation
,”
Exp. Mech.
,
38
(
2
), pp.
86
92
.
33.
Upton
,
M. L.
,
Gilchrist
,
C. L.
,
Guilak
,
F.
, and
Setton
,
L. A.
,
2008
, “
Transfer of Macroscale Tissue Strain to Microscale Cell Regions in the Deformed Meniscus
,”
Biophys. J.
,
95
(
4
), pp.
2116
2124
.
34.
Mulliken
,
A.
, and
Boyce
,
M.
,
2006
, “
Mechanics of the Rate-Dependent Elastic–Plastic Deformation of Glassy Polymers From Low to High Strain Rates
,”
Int. J. Solids Struct.
,
43
(
5
), pp.
1331
1356
.
35.
Cho
,
H.
,
Rinaldi
,
R. G.
, and
Boyce
,
M. C.
,
2013
, “
Constitutive Modeling of the Rate-Dependent Resilient and Dissipative Large Deformation Behavior of a Segmented Copolymer Polyuria
,”
Soft Matter
,
9
(
27
), pp.
6319
6330
.
36.
Bergstrom
,
J.
, and
Bischoff
,
J.
,
2010
, “
An Advanced Thermomechanical Constitutive Model for UHMWPE
,”
Int. J. Struct. Changes Solids
,
2
(1), pp.
31
39
.https://journals.tdl.org/ijscs/index.php/ijscs/article/view/2350
37.
Bergstrom
,
J.
,
2015
,
Mechanics of Solid Polymers—Theory and Computational Modeling
,
William Andrew
, San Diego, CA.
38.
Pelton
,
A. R.
,
Schroeder
,
V.
,
Mitchell
,
M. R.
,
Gong
,
X. Y.
,
Barney
,
M.
, and
Robertson
,
S. W.
,
2008
, “
Fatigue and Durability of Nitinol Stents
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
2
), pp.
153
164
.
39.
Dreher
,
M.
,
Nagaraja
,
S.
, and
Batchelor
,
B.
,
2015
, “
Effects of Fatigue on the Chemical and Mechanical Degradation of Model Stent Sub-Units
,”
J. Mech. Behav. Biomed. Mater.
,
59
, pp.
139
145
.
40.
Chen
,
C. C.
,
Chueh
,
J. Y.
,
Tseng
,
H.
,
Huang
,
H. M.
, and
Lee
,
S. Y.
,
2003
, “
Preparation and Characterization of Biodegradable PLA Polymeric Blends
,”
Biomaterials
,
24
(
7
), pp.
1167
1173
.
41.
Giordano
,
R. A.
,
Wu
,
B. M.
,
Borland
,
S. W.
,
Cima
,
L. G.
,
Sachs
,
E. M.
, and
Cima
,
M. J.
,
1996
, “
Mechanical Properties of Dense Polylactic Acid Structures Fabricated by Three Dimensional Printing
,”
J. Biomater. Sci.
,
8
(
1
), pp.
63
75
.
42.
Weir
,
N. A.
,
Buchanan
,
F. J.
,
Orr
,
J. F.
,
Farrar
,
D. F.
, and
Boyd
,
A.
,
2004
, “
Processing, Annealing and Sterilisation of Poly-L-Lactide
,”
Biomaterials
,
25
(
18
), pp.
3939
3949
.
43.
Renouf-Glauser
,
A. C.
,
Rose
,
J.
,
Farrar
,
D. F.
, and
Cameron
,
R. E.
,
2005
, “
The Effect of Crystallinity on the Deformation Mechanism and Bulk Mechanical Properties of PLLA
,”
Biomaterials
,
26
(
29
), pp.
5771
5782
.
44.
Dreher
,
M.
,
Nagaraja
,
S.
,
Bergstrom
,
J.
, and
Hayman
,
D.
,
2016
, “
Development of a Flow Evolution Network Model for Predicting the Viscoplastic Behavior of Poly(L-Lactide)
,” World Biomaterials Congress, Montreal, QC, Canada, May 17–22, Paper No.
206
.
45.
Soares
,
J. S.
,
Rajagopal
,
K. R.
, and
Moore
,
J. E.
,
2010
, “
Deformation-Induced Hydrolysis of a Degradable Polymeric Cylindrical Annulus
,”
Biomech. Model. Mechanobiol.
,
9
(
2
), pp.
177
186
.
46.
Bartkowiak-Jowsa
,
M.
,
Bedzinski
,
R.
,
Kozlowska
,
A.
,
Filipiak
,
J.
, and
Pezowicz
,
C.
,
2013
, “
Mechanical, Rheological, Fatigue, and Degradation Behavior of PLLA, PGLA and PDGLA as Materials for Vascular Implants
,”
Meccanica
,
48
(
3
), pp.
721
731
.
You do not currently have access to this content.