Knowledge of the muscle, ligament, and joint forces is important when planning orthopedic surgeries. Since these quantities cannot be measured in vivo under normal circumstances, the best alternative is to estimate them using musculoskeletal models. These models typically assume idealized joints, which are sufficient for general investigations but insufficient if the joint in focus is far from an idealized joint. The purpose of this study was to provide the mathematical details of a novel musculoskeletal modeling approach, called force-dependent kinematics (FDK), capable of simultaneously computing muscle, ligament, and joint forces as well as internal joint displacements governed by contact surfaces and ligament structures. The method was implemented into the anybody modeling system and used to develop a subject-specific mandible model, which was compared to a point-on-plane (POP) model and validated against joint kinematics measured with a custom-built brace during unloaded emulated chewing, open and close, and protrusion movements. Generally, both joint models estimated the joint kinematics well with the POP model performing slightly better (root-mean-square-deviation (RMSD) of less than 0.75 mm for the POP model and 1.7 mm for the FDK model). However, substantial differences were observed when comparing the estimated joint forces (RMSD up to 24.7 N), demonstrating the dependency on the joint model. Although the presented mandible model still contains room for improvements, this study shows the capabilities of the FDK methodology for creating joint models that take the geometry and joint elasticity into account.

References

References
1.
Mellon
,
S. J.
,
Grammatopoulos
,
G.
,
Andersen
,
M. S.
,
Pegg
,
E. C.
,
Pandit
,
H. G.
,
Murray
,
D. W.
, and
Gill
,
H. S.
,
2013
, “
Individual Motion Patterns During Gait and Sit-to-Stand Contribute to Edge-Loading Risk in Metal-on-Metal Hip Resurfacing
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
7
), pp.
799
810
.
2.
Rasmussen
,
J.
,
Tørholm
,
S.
, and
de Zee
,
M.
,
2009
, “
Computational Analysis of the Influence of Seat Pan Inclination and Friction on Muscle Activity and Spinal Joint Forces
,”
Int. J. Ind. Ergon.
,
39
(
1
), pp.
52
57
.
3.
Mirakhorlo
,
M.
,
Azghani
,
M. R.
, and
Kahrizi
,
S.
,
2014
, “
Validation of a Musculoskeletal Model of Lifting and Its Application for Biomechanical Evaluation of Lifting Techniques
,”
J. Res. Health Sci.
,
14
(
1
), pp.
23
28
.http://jrhs.umsha.ac.ir/index.php/JRHS/article/view/879/html
4.
Crowninshield
,
R. D.
,
1978
, “
Use of Optimization Techniques to Predict Muscle Forces
,”
ASME J. Biomech. Eng.
,
100
(
2
), pp.
88
92
.
5.
Rasmussen
,
J.
,
Damsgaard
,
M.
, and
Voigt
,
M.
,
2001
, “
Muscle Recruitment by the Min/Max Criterion: A Comparative Numerical Study
,”
J. Biomech.
,
34
(
3
), pp.
409
415
.
6.
Thelen
,
D. G.
, and
Anderson
,
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
,
39
(
6
), pp.
1107
1115
.
7.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Besier
,
T. F.
,
2004
, “
Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command
,”
J. Appl. Biomech.
,
20
(
4
), pp.
367
395
.
8.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.
9.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.
10.
de Zee
,
M.
,
Dalstra
,
M.
,
Cattaneo
,
P. M.
,
Rasmussen
,
J.
,
Svensson
,
P.
, and
Melsen
,
B.
,
2007
, “
Validation of a Musculo-Skeletal Model of the Mandible and Its Application to Mandibular Distraction Osteogenesis
,”
J. Biomech.
,
40
(
6
), pp.
1192
1201
.
11.
de Zee
,
M.
,
Hansen
,
L.
,
Wong
,
C.
,
Rasmussen
,
J.
, and
Simonsen
,
E. B.
,
2007
, “
A Generic Detailed Rigid-Body Lumbar Spine Model
,”
J. Biomech.
,
40
(
6
), pp.
1219
1227
.
12.
Klein Horsman
,
M. D.
,
Koopman
,
H. F. J. M.
,
van der Helm
,
F. C. T.
,
Prosé
,
L. P.
, and
Veeger
,
H. E. J.
,
2007
, “
Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity
,”
Clin. Biomech.
,
22
(
2
), pp.
239
247
.
13.
Benoit
,
D. L.
,
Ramsey
,
D. K.
,
Lamontagne
,
M.
,
Xu
,
L.
,
Wretenberg
,
P.
, and
Renström
,
P.
,
2006
, “
Effect of Skin Movement Artifact on Knee Kinematics During Gait and Cutting Motions Measured In Vivo
,”
Gait Posture
,
24
(
2
), pp.
152
164
.
14.
Thelen
,
D. G.
,
Choi
,
K. W.
, and
Schmitz
,
A. M.
,
2014
, “
Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021033
.
15.
Halloran
,
J. P.
,
Ackermann
,
M.
,
Erdemir
,
A.
, and
van den Bogert
,
A. J.
,
2010
, “
Concurrent Musculoskeletal Dynamics and Finite Element Analysis Predicts Altered Gait Patterns to Reduce Foot Tissue Loading
,”
J. Biomech.
,
43
(
14
), pp.
2810
2815
.
16.
Lin
,
Y.-C.
,
Walter
,
J. P.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
Fregly
,
B. J.
,
2010
, “
Simultaneous Prediction of Muscle and Contact Forces in the Knee During Gait
,”
J. Biomech.
,
43
(
5
), pp.
945
952
.
17.
Praagman
,
M.
,
Chadwick
,
E. K. J.
,
Van Der Helm
,
F. C. T.
, and
Veeger
,
H. E. J.
,
2006
, “
The Relationship Between Two Different Mechanical Cost Functions and Muscle Oxygen Consumption
,”
J. Biomech.
,
39
(
4
), pp.
758
765
.
18.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
, Cambridge, UK.
19.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2011
, “
A Novel Musculoskeletal Modelling Approach for Non-Conforming Joints
,”
13th Biennial International Symposium on Computer Simulation in Biomechanics
, Leuven, Belgium.
20.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.
21.
Zhang
,
X.
,
Chen
,
Z.
,
Wang
,
L.
,
Yang
,
W.
,
Li
,
D.
, and
Jin
,
Z.
,
2015
, “
Prediction of Hip Joint Load and Translation Using Musculoskeletal Modelling With Force-Dependent Kinematics and Experimental Validation
,”
Proc. Inst. Mech. Eng., Part H
,
229
(
7
), pp.
477
490
.
22.
Sins
,
L.
,
Tétreault
,
P.
,
Hagemeister
,
N.
, and
Nuño
,
N.
,
2015
, “
Adaptation of the AnyBody™ Musculoskeletal Shoulder Model to the Nonconforming Total Shoulder Arthroplasty Context
,”
ASME J. Biomech. Eng.
,
137
(
10
), p.
101006
.
23.
Ignasiak
,
D.
,
Dendorfer
,
S.
, and
Ferguson
,
S. J.
,
2016
, “
Thoracolumbar Spine Model With Articulated Ribcage for the Prediction of Dynamic Spinal Loading
,”
J. Biomech.
,
49
(
6
), pp.
959
966
.
24.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2009
, “
Kinematic Analysis of Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
371
384
.
25.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Modell. Pract. Theory
,
14
(
8
), pp.
1100
1111
.
26.
Koolstra
,
J. H.
, and
van Eijden
,
T. M. G. J.
,
2005
, “
Combined Finite-Element and Rigid-Body Analysis of Human Jaw Joint Dynamics
,”
J. Biomech.
,
38
(
12
), pp.
2431
2439
.
27.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1991
, “
Ligament-Bone Interaction in a Three-Dimensional Model of the Knee
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
263
269
.
28.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1986
, “
Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
(
6
), pp.
425
432
.
29.
Chen
,
J.
,
Akyuz
,
U.
,
Xu
,
L.
, and
Pidaparti
,
R. M. V.
,
1998
, “
Stress Analysis of the Human Temporomandibular Joint
,”
Med. Eng. Phys.
,
20
(
8
), pp.
565
572
.
30.
Schwer
,
L. E.
,
2007
, “
Validation Metrics for Response Histories: Perspectives and Case Studies
,”
Eng. Comput.
,
23
(
4
), pp.
295
309
.
31.
Hannam
,
A. G.
,
Stavness
,
I.
,
Lloyd
,
J. E.
, and
Fels
,
S.
,
2008
, “
A Dynamic Model of Jaw and Hyoid Biomechanics During Chewing
,”
J. Biomech.
,
41
(
5
), pp.
1069
1076
.
32.
Tuijt
,
M.
,
Koolstra
,
J. H.
,
Lobbezoo
,
F.
, and
Naeije
,
M.
,
2010
, “
Differences in Loading of the Temporomandibular Joint During Opening and Closing of the Jaw
,”
J. Biomech.
,
43
(
6
), pp.
1048
1054
.
33.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.
34.
Guess
,
T. M.
,
Stylianou
,
A. P.
, and
Kia
,
M.
,
2014
, “
Concurrent Prediction of Muscle and Tibiofemoral Contact Forces During Treadmill Gait
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021032
.
35.
Chen
,
Z.
,
Zhang
,
Z.
,
Wang
,
L.
,
Li
,
D.
,
Zhang
,
Y.
, and
Jin
,
Z.
,
2016
, “
Evaluation of a Subject-Specific Musculoskeletal Modelling Framework for Load Prediction in Total Knee Arthroplasty
,”
Med. Eng. Phys.
,
38
(
8
), pp.
708
716
.
You do not currently have access to this content.