Hernia meshes significantly reduce the recurrence rates in hernia repair. It is known that they affect the abdominal wall postimplantation, yet the understanding of in vivo mechanics in the mesh placement area is lacking. We established a single C-arm biplane fluoroscopic system to study strains at the interface between the mesh and repaired abdominal tissues. We aimed to validate this system for future porcine hernia repair studies. Custom matlab programs were written to correct for pincushion distortion, and direct linear transformation (DLT) reconstructed objects in 3D. Using a custom biplane-trough setup, image sets were acquired throughout the calibrated volume to evaluate a radio-opaque test piece with known distances between adjacent beads. Distances were measured postprocessing and compared to known measurements. Repeatability testing was conducted by taking image sets of the test piece in a fixed location to determine system movement. The error in areal stretch tracking was evaluated by imaging a square plate with fixed radio-opaque beads and using matlab programs to compare the measured areal stretch to known bead positions. Minor differences between measured and known distances in the test piece were not statistically different, and the system yielded a 0.01 mm bias in the XY plane and a precision of 0.61 mm. The measured areal stretch was 0.996, which was not significantly different than the expected value of 1. In addition, preliminary stretch data for a hernia mesh in a porcine model demonstrated technique feasibility to measure in vivo porcine abdominal mechanics.

References

References
1.
Burger
,
J. W.
,
Luijendijk
,
R. W.
,
Hop
,
W. C.
,
Halm
,
J. A.
,
Verdaasdonk
,
E. G.
, and
Jeekel
,
J.
,
2004
, “
Long-Term Follow-Up of a Randomized Controlled Trial of Suture Versus Mesh Repair of Incisional Hernia
,”
Ann. Surg.
,
240
(
4
), pp.
578
583
; discussion 583–575.
2.
Deeken
,
C. R.
,
Thompson
,
D. M.
, Jr.
,
Castile
,
R. M.
, and
Lake
,
S. P.
,
2014
, “
Biaxial Analysis of Synthetic Scaffolds for Hernia Repair Demonstrates Variability in Mechanical Anisotropy, Non-Linearity and Hysteresis
,”
J. Mech. Behav. Biomed. Mater.
,
38
, pp.
6
16
.
3.
Deeken
,
C. R.
,
Abdo
,
M. S.
,
Frisella
,
M. M.
, and
Matthews
,
B. D.
,
2011
, “
Physicomechanical Evaluation of Absorbable and Nonabsorbable Barrier Composite Meshes for Laparoscopic Ventral Hernia Repair
,”
Surg. Endoscopy
,
25
(
5
), pp.
1541
1552
.
4.
Est
,
S.
,
Roen
,
M.
,
Chi
,
T.
,
Simien
,
A.
,
Castile
,
R. M.
,
Thompson
,
D. M.
, Jr.
,
Blatnik
,
J. A.
,
Deeken
,
C. R.
, and
Lake
,
S. P.
,
2017
, “
Multi-Directional Mechanical Analysis of Synthetic Scaffolds for Hernia Repair
,”
J. Mech. Behav. Biomed. Mater.
,
71
, pp.
43
53
.
5.
Hernandez-Gascon
,
B.
,
Pena
,
E.
,
Pascual
,
G.
,
Rodriguez
,
M.
,
Bellon
,
J. M.
, and
Calvo
,
B.
,
2012
, “
Long-Term Anisotropic Mechanical Response of Surgical Meshes Used to Repair Abdominal Wall Defects
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
257
271
.
6.
Hansen
,
N. L.
,
Barabasch
,
A.
,
Distelmaier
,
M.
,
Ciritsis
,
A.
,
Kuehnert
,
N.
,
Otto
,
J.
,
Conze
,
J.
,
Klinge
,
U.
,
Hilgers
,
R. D.
,
Kuhl
,
C. K.
, and
Kraemer
,
N. A.
,
2013
, “
First In-Human Magnetic Resonance Visualization of Surgical Mesh Implants for Inguinal Hernia Treatment
,”
Invest. Radiol.
,
48
(
11
), pp.
770
778
.
7.
Podwojewski
,
F.
,
Ottenio
,
M.
,
Beillas
,
P.
,
Guerin
,
G.
,
Turquier
,
F.
, and
Mitton
,
D.
,
2013
, “
Mechanical Response of Animal Abdominal Walls In Vitro: Evaluation of the Influence of a Hernia Defect and a Repair With a Mesh Implanted Intraperitoneally
,”
J. Biomech.
,
46
(
3
), pp.
561
566
.
8.
Simon-Allue
,
R.
,
Montiel
,
J. M.
,
Bellon
,
J. M.
, and
Calvo
,
B.
,
2015
, “
Developing a New Methodology to Characterize In Vivo the Passive Mechanical Behavior of Abdominal Wall on an Animal Model
,”
J. Mech. Behav. Biomed. Mater.
,
51
, pp.
40
49
.
9.
Podwojewski
,
F.
,
Ottenio
,
M.
,
Beillas
,
P.
,
Guerin
,
G.
,
Turquier
,
F.
, and
Mitton
,
D.
,
2014
, “
Mechanical Response of Human Abdominal Walls Ex Vivo: Effect of an Incisional Hernia and a Mesh Repair
,”
J. Mech. Behav. Biomed. Mater.
,
38
, pp.
126
133
.
10.
Marzan
,
G.
,
1976
, “
Rational Design for Close-Range Photogrammetry
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
11.
Bey
,
M. J.
,
Zauel
,
R.
,
Brock
,
S. K.
, and
Tashman
,
S.
,
2006
, “
Validation of a New Model-Based Tracking Technique for Measuring Three-Dimensional, In Vivo Glenohumeral Joint Kinematics
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
604
609
.
12.
Bey
,
M. J.
,
Kline
,
S. K.
,
Tashman
,
S.
, and
Zauel
,
R.
,
2008
, “
Accuracy of Biplane X-Ray Imaging Combined With Model-Based Tracking for Measuring In-Vivo Patellofemoral Joint Motion
,”
J. Orthop. Surg. Res.
,
3
(
1
), p.
38
.
13.
Kapron
,
A. L.
,
Aoki
,
S. K.
,
Peters
,
C. L.
,
Maas
,
S. A.
,
Bey
,
M. J.
,
Zauel
,
R.
, and
Anderson
,
A. E.
,
2014
, “
Accuracy and Feasibility of Dual Fluoroscopy and Model-Based Tracking to Quantify In Vivo Hip Kinematics During Clinical Exams
,”
J. Appl. Biomech.
,
30
(
3
), pp.
461
470
.
14.
Iaquinto
,
J. M.
,
Tsai
,
R.
,
Haynor
,
D. R.
,
Fassbind
,
M. J.
,
Sangeorzan
,
B. J.
, and
Ledoux
,
W. R.
,
2014
, “
Marker-Based Validation of a Biplane Fluoroscopy System for Quantifying Foot Kinematics
,”
Med. Eng. Phys.
,
36
(
3
), pp.
391
396
.
15.
Amini
,
R.
,
Voycheck
,
C. A.
, and
Debski
,
R. E.
,
2014
, “
A Method for Predicting Collagen Fiber Realignment in Non-Planar Tissue Surfaces as Applied to Glenohumeral Capsule During Clinically Relevant Deformation
,”
ASME J. Biomech. Eng.
,
136
(
3
), p.
031003
.
16.
Jenkins
,
E. D.
,
Melman
,
L.
,
Deeken
,
C. R.
,
Greco
,
S. C.
,
Frisella
,
M. M.
, and
Matthews
,
B. D.
,
2010
, “
Evaluation of Fenestrated and Non-Fenestrated Biologic Grafts in a Porcine Model of Mature Ventral Incisional Hernia Repair
,”
Hernia
,
14
(
6
), pp.
599
610
.
17.
Wang
,
J.
, and
Blackburn
,
T. J.
,
2000
, “
The AAPM/RSNA Physics Tutorial for Residents: X-Ray Image Intensifiers for Fluoroscopy
,”
Radiographics
,
20
(
5
), pp.
1471
1477
.
18.
Bouguet
,
J.-Y.
,
2004
, “
Camera Calibration Toolbox for Matlab
,” California Institute of Technology, Pasadena, CA.
19.
Zhengyou
,
Z.
,
1999
,
Flexible Camera Calibration by Viewing a Plane From Unknown Orientations
, Vol.
661
, Microsoft Research, Redmond, WA, pp.
666
673
.
20.
Heikkila
,
J.
, and
Silven
,
O.
,
1997
, “
A Four-Step Camera Calibration Procedure With Implicit Image Correction
,”
Conference on Computer Vision and Pattern Recognition
(
CVPR '97
), San Juan, Puerto Rico, June 17–19, pp. 1106–1112.
21.
Sturm
,
P. F.
, and
Maybank
,
S. J.
,
1999
, “
On Plane-Based Camera Calibration: A General Algorithm, Singularities, Applications
,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (
CVPR
), Fort Collins, CO, June 23–25, p. 437.
22.
Tsai
,
R. Y.
,
1987
, “
A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses
,”
IEEE J. Rob. Autom.
,
3
(4), pp. 323–344.
23.
Clarke
,
T. A.
, and
Fryer
,
J. G.
,
1998
, “
The Development of Camera Calibration Methods and Models
,”
Photogramm. Rec.
,
16
(
91
), pp.
51
66
.
24.
Rossi
,
M. M.
,
Silvatti
,
A. P.
,
Dias
,
F. A.
, and
Barros
,
R. M.
,
2015
, “
Improved Accuracy in 3D Analysis Using DLT After Lens Distortion Correction
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
9
), pp.
993
1002
.
25.
Goktepe
,
A.
, and
Kocaman
,
E.
,
2010
, “
Analysis of Camera Calibrations Using Direct Linear Transformation and Bundle Adjustment Methods
,”
Sci. Res. Essays
,
5
(
9
), pp.
869
872
.http://www.academicjournals.org/article/article1380617995_Goktepe%20and%20Kocaman.pdf
26.
ASTM
,
2014
, “
Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM E177-13
.https://www.astm.org/Standards/E177.htm
27.
Filas
,
B. A.
,
Knutsen
,
A. K.
,
Bayly
,
P. V.
, and
Taber
,
L. A.
,
2008
, “
A New Method for Measuring Deformation of Folding Surfaces During Morphogenesis
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061010
.
28.
Amini Khoiy
,
K.
,
Biswas
,
D.
,
Decker
,
T. N.
,
Asgarian
,
K. T.
,
Loth
,
F.
, and
Amini
,
R.
,
2016
, “
Surface Strains of Porcine Tricuspid Valve Septal Leaflets Measured in Ex Vivo Beating Hearts
,”
ASME J. Biomech. Eng.
,
138
(
11
), p.
111006
.
29.
Amini
,
R.
,
Eckert
,
C. E.
,
Koomalsingh
,
K.
,
McGarvey
,
J.
,
Minakawa
,
M.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2012
, “
On the In Vivo Deformation of the Mitral Valve Anterior Leaflet: Effects of Annular Geometry and Referential Configuration
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1455
1467
.
30.
Tashman
,
S.
, and
Anderst
,
W.
,
2003
, “
In-Vivo Measurement of Dynamic Joint Motion Using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
238
245
.
You do not currently have access to this content.