Tumor growth being a multistage process has been investigated from different aspects. In the present study, an attempt is made to represent a constitutive-structure-based model of avascular tumor growth in which the effects of tensile stresses caused by collagen fibers are considered. Collagen fibers as a source of anisotropy in the structure of tissue are taken into account using a continuous fiber distribution formulation. To this end, a finite element modeling is implemented in which a neo-Hookean hyperelastic material is assigned to the tumor and its surrounding host. The tumor is supplied with a growth term. The growth term includes the effect of parameters such as nutrient concentration on the tumor growth and the tumor's solid phase content in the formulation. Results of the study revealed that decrease of solid phase is indicative of decrease in growth rate and the final steady-state value of tumor's radius. Moreover, fiber distribution affects the final shape of the tumor, and it could be used to control the shape and geometry of the tumor in complex morphologies. Finally, the findings demonstrated that the exerted stresses on the tumor increase as time passes. Compression of tumor cells leads to the reduction of tumor growth rate until it gradually reaches an equilibrium radius. This finding is in accordance with experimental data. Hence, this formulation can be deployed to evaluate both the residual stresses induced by growth and the mechanical interactions with the host tissue.

References

References
1.
Cristini
,
V.
, and
Lowengrub
,
J.
,
2010
,
Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach
,
Cambridge University Press
, New York.
2.
Drasdo
,
D.
, and
Hoehme
,
S.
,
2005
, “
A Single-Cell-Based Model of Tumor Growth In Vitro: Monolayers and Spheroids
,”
Phys. Biol.
,
2
(
3
), pp.
133
147
.
3.
Ambrosi
,
D.
, and
Mollica
,
F.
,
2002
, “
On the Mechanics of a Growing Tumor
,”
Int. J. Eng. Sci.
,
40
(
12
), pp.
1297
1316
.
4.
Araujo
,
R. P.
, and
McElwain
,
D.
,
2004
, “
A Linear-Elastic Model of Anisotropic Tumour Growth
,”
Eur. J. Appl. Math.
,
15
(
3
), pp.
365
384
.
5.
MacLaurin
,
J.
,
Chapman
,
J.
,
Jones
,
G. W.
, and
Roose
,
T.
,
2012
, “
The Buckling of Capillaries in Solid Tumours
,”
Proc. R. Soc. A
,
468
(
2148
), pp.
4123
4145
.
6.
Kim
,
Y.
,
Stolarska
,
M. A.
, and
Othmer
,
H. G.
,
2007
, “
A Hybrid Model for Tumor Spheroid Growth In Vitro I: Theoretical Development and Early Results
,”
Math. Models Methods Appl. Sci.
,
17
(
supp01
), pp.
1773
1798
.
7.
Breward
,
C.
,
Byrne
,
H.
, and
Lewis
,
C.
,
2002
, “
The Role of Cell-Cell Interactions in a Two-Phase Model for Avascular Tumour Growth
,”
J. Math. Biol.
,
45
(
2
), pp.
125
152
.
8.
Breward
,
C. J.
,
Byrne
,
H. M.
, and
Lewis
,
C. E.
,
2003
, “
A Multiphase Model Describing Vascular Tumour Growth
,”
Bull. Math. Biol.
,
65
(
4
), pp.
609
640
.
9.
Roose
,
T.
,
Netti
,
P. A.
,
Munn
,
L. L.
,
Boucher
,
Y.
, and
Jain
,
R. K.
,
2003
, “
Solid Stress Generated by Spheroid Growth Estimated Using a Linear Poroelasticity Model
,”
Microvasc. Res.
,
66
(
3
), pp.
204
212
.
10.
Stylianopoulos
,
T.
,
Martin
,
J. D.
,
Snuderl
,
M.
,
Mpekris
,
F.
,
Jain
,
S. R.
, and
Jain
,
R. K.
,
2013
, “
Coevolution of Solid Stress and Interstitial Fluid Pressure in Tumors During Progression: Implications for Vascular Collapse
,”
Cancer Res.
,
73
(
13
), pp.
3833
3841
.
11.
Ambrosi
,
D.
, and
Preziosi
,
L.
,
2009
, “
Cell Adhesion Mechanisms and Stress Relaxation in the Mechanics of Tumours
,”
Biomech. Model. Mechanobiol.
,
8
(
5
), pp.
397
413
.
12.
Jain
,
R. K.
,
Martin
,
J. D.
, and
Stylianopoulos
,
T.
,
2014
, “
The Role of Mechanical Forces in Tumor Growth and Therapy
,”
Annu. Rev. Biomed. Eng.
,
16
(
1
), pp.
321
346
.
13.
Voutouri
,
C.
,
Mpekris
,
F.
,
Papageorgis
,
P.
,
Odysseos
,
A. D.
, and
Stylianopoulos
,
T.
,
2014
, “
Role of Constitutive Behavior and Tumor-Host Mechanical Interactions in the State of Stress and Growth of Solid Tumors
,”
PLoS One
,
9
(
8
), p.
e104717
.
14.
Sherratt
,
J. A.
, and
Chaplain
,
M. A.
,
2001
, “
A New Mathematical Model for Avascular Tumour Growth
,”
J. Math. Biol.
,
43
(
4
), pp.
291
312
.
15.
Stylianopoulos
,
T.
,
Martin
,
J. D.
,
Chauhan
, V
. P.
,
Jain
,
S. R.
,
Diop-Frimpong
,
B.
,
Bardeesy
,
N.
,
Smith
,
B. L.
,
Ferrone
,
C. R.
,
Hornicek
,
F. J.
,
Boucher
,
Y.
,
Munn
,
L. L.
, and
Jain
,
R. K.
,
2012
, “
Causes, Consequences, and Remedies for Growth-Induced Solid Stress in Murine and Human Tumors
,”
Proc. Natl. Acad. Sci.
,
109
(
38
), pp.
15101
15108
.
16.
Byrne
,
H.
, and
Preziosi
,
L.
,
2003
, “
Modelling Solid Tumour Growth Using the Theory of Mixtures
,”
Math. Med. Biol.
,
20
(
4
), pp.
341
366
.
17.
Nagy
,
J. A.
,
Dvorak
,
A. M.
, and
Dvorak
,
H. F.
,
2012
, “
Vascular Hyperpermeability, Angiogenesis, and Stroma Generation
,”
Cold Spring Harbor Perspect. Med.
,
2
(
2
), p.
a006544
.
18.
Ronnov-Jessen
,
L.
,
Petersen
,
O. W.
, and
Bissell
,
M. J.
,
1996
, “
Cellular Changes Involved in Conversion of Normal to Malignant Breast: Importance of the Stromal Reaction
,”
Physiol. Rev.
,
76
(
1
), pp.
69
125
.https://www.ncbi.nlm.nih.gov/pubmed/8592733
19.
Ateshian
,
G. A.
,
Rajan
,
V.
,
Chahine
,
N. O.
,
Canal
,
C. E.
, and
Hung
,
C. T.
,
2009
, “
Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061003
.
20.
Jain
,
R. K.
, and
Stylianopoulos
,
T.
,
2010
, “
Delivering Nanomedicine to Solid Tumors
,”
Nat. Rev. Clin. Oncol.
,
7
(
11
), pp.
653
664
.
21.
Pluen
,
A.
,
Boucher
,
Y.
,
Ramanujan
,
S.
,
McKee
,
T. D.
,
Gohongi
,
T.
,
di Tomaso
,
E.
,
Brown
,
E. B.
,
Izumi
,
Y.
,
Campbell
,
R. B.
,
Berk
,
D. A.
, and
Jain
,
R. K.
,
2001
, “
Role of Tumor–Host Interactions in Interstitial Diffusion of Macromolecules: Cranial Vs. Subcutaneous Tumors
,”
Proc. Natl. Acad. Sci.
,
98
(
8
), pp.
4628
4633
.
22.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.
23.
Stylianopoulos
,
T.
, and
Barocas
, V
. H.
,
2007
, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
611
618
.
24.
Driessen
,
N. J.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
,
2005
, “
A Structural Constitutive Model for Collagenous Cardiovascular Tissues Incorporating the Angular Fiber Distribution
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
494
503
.
25.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
327
335
.
26.
Wilson
,
W.
,
Van Donkelaar
,
C.
,
Van Rietbergen
,
B.
, and
Huiskes
,
R.
,
2005
, “
A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
,
38
(
6
), pp.
1195
1204
.
27.
Wilson
,
W.
,
Huyghe
,
J.
, and
Van Donkelaar
,
C.
,
2007
, “
Depth-Dependent Compressive Equilibrium Properties of Articular Cartilage Explained by Its Composition
,”
Biomech. Model. Mechanobiol.
,
6
(
1–2
), pp.
43
53
.
28.
Soulhat
,
J.
,
Buschmann
,
M.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
121
(
3
), pp.
340
347
.
29.
Hagendoorn
,
J.
,
Tong
,
R.
,
Fukumura
,
D.
,
Lin
,
Q.
,
Lobo
,
J.
,
Padera
,
T. P.
,
Xu
,
L.
,
Kucherlapati
,
R.
, and
Jain
,
R. K.
,
2006
, “
Onset of Abnormal Blood and Lymphatic Vessel Function and Interstitial Hypertension in Early Stages of Carcinogenesis
,”
Cancer Res.
,
66
(
7
), pp.
3360
3364
.
30.
Padera
,
T. P.
,
Stoll
,
B. R.
,
Tooredman
,
J. B.
,
Capen
,
D.
,
di Tomaso
,
E.
, and
Jain
,
R. K.
,
2004
, “
Pathology: Cancer Cells Compress Intratumour Vessels
,”
Nature
,
427
(
6976
), p.
695
.
31.
Helmlinger
,
G.
,
Netti
,
P. A.
,
Lichtenbeld
,
H. C.
,
Melder
,
R. J.
, and
Jain
,
R. K.
,
1997
, “
Solid Stress Inhibits the Growth of Multicellular Tumor Spheroids
,”
Nat. Biotechnol.
,
15
(
8
), pp.
778
783
.
32.
Cheng
,
G.
,
Tse
,
J.
,
Jain
,
R. K.
, and
Munn
,
L. L.
,
2009
, “
Micro-Environmental Mechanical Stress Controls Tumor Spheroid Size and Morphology by Suppressing Proliferation and Inducing Apoptosis in Cancer Cells
,”
PLoS One
,
4
(
2
), p.
e4632
.
33.
Kaufman
,
L. J.
,
Brangwynne
,
C. P.
,
Kasza
,
K. E.
,
Filippidi
,
E.
,
Gordon
, V
. D.
,
Deisboeck
,
T. S.
, and
Weitz
,
D. A.
,
2005
, “
Glioma Expansion in Collagen I Matrices: Analyzing Collagen Concentration-Dependent Growth and Motility Patterns
,”
Biophys. J.
,
89
(
1
), pp.
635
650
.
34.
Stylianopoulos
,
T.
, and
Jain
,
R. K.
,
2013
, “
Combining Two Strategies to Improve Perfusion and Drug Delivery in Solid Tumors
,”
Proc. Natl. Acad. Sci.
,
110
(
46
), pp.
18632
18637
.
35.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics
, Vol.
24
,
Wiley
,
Chichester, UK
.
36.
Roose
,
T.
,
Chapman
,
S. J.
, and
Maini
,
P. K.
,
2007
, “
Mathematical Models of Avascular Tumor Growth
,”
SIAM Rev.
,
49
(
2
), pp.
179
208
.
37.
Nicholson
,
C.
, and
Phillips
,
J.
,
1981
, “
Ion Diffusion Modified by Tortuosity and Volume Fraction in the Extracellular Microenvironment of the Rat Cerebellum
,”
J. Physiol.
,
321
(
1
), pp.
225
257
.
38.
Freyer
,
J.
,
1981
, “
Heterogeneity in Multicell Spheroids Induced by Alterations in the External Oxygen and Glucose Concentration
,” Department of Radiation Biology and Biophysics, Rochester University, Rochester, NY, Report No.
DOE/EV/03490-2101
.https://www.osti.gov/scitech/biblio/6583865
39.
Casciari
,
J.
,
Sotirchos
,
S.
, and
Sutherland
,
R.
,
1992
, “
Mathematical Modelling of Microenvironment and Growth in EMT6/Ro Multicellular Tumour Spheroids
,”
Cell Proliferation
,
25
(
1
), pp.
1
22
.
40.
Shirinifard
,
A.
,
Gens
,
J. S.
,
Zaitlen
,
B. L.
,
Popławski
,
N. J.
,
Swat
,
M.
, and
Glazier
,
J. A.
,
2009
, “
3D Multi-Cell Simulation of Tumor Growth and Angiogenesis
,”
PLoS One
,
4
(
10
), p.
e7190
.
41.
Harko
,
T.
, and
Mak
,
M. K.
,
2015
, “
Travelling Wave Solutions of the Reaction-Diffusion Mathematical Model of Glioblastoma Growth: An Abel Equation Based Approach
,”
Math. Biosci. Eng.
,
12
(
1
), pp.
41
69
.
42.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.
43.
Ateshian
,
G. A.
,
2007
, “
Anisotropy of Fibrous Tissues in Relation to the Distribution of Tensed and Buckled Fibers
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
240
249
.
44.
Chahine
,
N. O.
,
Wang
,
C. C.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2004
, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
,
37
(
8
), pp.
1251
1261
.
45.
Clauss
,
M.
, and
Breier
,
G.
,
2004
,
Mechanisms of Angiogenesis
, Vol.
94
,
Springer Science & Business Media
, Basel, Switzerland.
46.
Nishida
,
N.
,
Yano
,
H.
,
Nishida
,
T.
,
Kamura
,
T.
, and
Kojiro
,
M.
,
2006
, “
Angiogenesis in Cancer
,”
Vasc. Health Risk Manage.
,
2
(
3
), pp.
213
219
.
47.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.
48.
Janet
,
M. T.
,
Cheng
,
G.
,
Tyrrell
,
J. A.
,
Wilcox-Adelman
,
S. A.
,
Boucher
,
Y.
,
Jain
,
R. K.
, and
Munn
,
L. L.
,
2012
, “
Mechanical Compression Drives Cancer Cells Toward Invasive Phenotype
,”
Proc. Natl. Acad. Sci.
,
109
(
3
), pp.
911
916
.
49.
Roeder
,
B. A.
,
Kokini
,
K.
, and
Voytik-Harbin
,
S. L.
,
2009
, “
Fibril Microstructure Affects Strain Transmission Within Collagen Extracellular Matrices
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
031004
.
50.
Kokini
,
K.
,
Sturgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
,
2002
, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
214
222
.
51.
Jain
,
R. K.
,
1987
, “
Transport of Molecules in the Tumor Interstitium: A Review
,”
Cancer Res.
,
47
(
12
), pp.
3039
3051
.http://cancerres.aacrjournals.org/content/47/12/3039
52.
Netti
,
P. A.
,
Berk
,
D. A.
,
Swartz
,
M. A.
,
Grodzinsky
,
A. J.
, and
Jain
,
R. K.
,
2000
, “
Role of Extracellular Matrix Assembly in Interstitial Transport in Solid Tumors
,”
Cancer Res.
,
60
(
9
), pp.
2497
2503
.http://cancerres.aacrjournals.org/content/60/9/2497
53.
Choi
,
J.
,
Credit
,
K.
,
Henderson
,
K.
,
Deverkadra
,
R.
,
He
,
Z.
,
Wiig
,
H.
,
Vanpelt
,
H.
, and
Flessner
,
M. F.
,
2006
, “
Intraperitoneal Immunotherapy for Metastatic Ovarian Carcinoma: Resistance of Intratumoral Collagen to Antibody Penetration
,”
Clin. Cancer Res.
,
12
(
6
), pp.
1906
1912
.
54.
Pouysségur
,
J.
,
Dayan
,
F.
, and
Mazure
,
N. M.
,
2006
, “
Hypoxia Signalling in Cancer and Approaches to Enforce Tumour Regression
,”
Nature
,
441
(
7092
), pp.
437
443
.
55.
Kaur
,
B.
,
Khwaja
,
F. W.
,
Severson
,
E. A.
,
Matheny
,
S. L.
,
Brat
,
D. J.
, and
Van Meir
,
E. G.
,
2005
, “
Hypoxia and the Hypoxia-Inducible-Factor Pathway in Glioma Growth and Angiogenesis
,”
Neuro-Oncology
,
7
(
2
), pp.
134
153
.
56.
Chauhan
, V
. P.
,
Martin
,
J. D.
,
Liu
,
H.
,
Lacorre
,
D. A.
,
Jain
,
S. R.
,
Kozin
,
S. V.
,
Stylianopoulos
,
T.
,
Mousa
,
A. S.
,
Han
,
X.
,
Adstamongkonkul
,
P.
,
Popovic
,
Z.
,
Huang
,
P.
,
Bawendi
,
M. G.
,
Boucher
,
Y.
, and
Jain
,
R. K.
,
2013
, “
Angiotensin Inhibition Enhances Drug Delivery and Potentiates Chemotherapy by Decompressing Tumour Blood Vessels
,”
Nat. Commun.
,
4
, p.
2516
.
You do not currently have access to this content.