The pediatric use of pneumatic ventricular assist devices (VADs) as a bridge to heart transplant still suffers for short-term major complications such as bleeding and thromboembolism. Although numerical techniques are increasingly exploited to support the process of device optimization, an effective virtual benchmark is still lacking. Focusing on the 12 cc Penn State pneumatic VAD, we developed a novel fluid–structure interaction (FSI) model able to capture the device functioning, reproducing the mechanical interplay between the diaphragm, the blood chamber, and the pneumatic actuation. The FSI model included the diaphragm mechanical response from uniaxial tensile tests, realistic VAD pressure operative conditions from a dedicated mock loop system, and the behavior of VAD valves. Our FSI-based benchmark effectively captured the complexity of the diaphragm dynamics. During diastole, the initial slow diaphragm retraction in the air chamber was followed by a more rapid phase; asymmetries were noticed in the diaphragm configuration during its systolic inflation in the blood chamber. The FSI model also captured the major features of the device fluid dynamics. In particular, during diastole, a rotational wall washing pattern is promoted by the penetrating inlet jet with a low-velocity region located in the center of the device. Our numerical analysis of the 12 cc Penn State VAD points out the potential of the proposed FSI approach well resembling previous experimental evidences; if further tested and validated, it could be exploited as a virtual benchmark to deepen VAD-related complications and to support the ongoing optimization of pediatric devices.

References

References
1.
Colvin
,
M.
,
Smith
,
J. M.
,
Skeans
,
M. A.
,
Edwards
,
L. B.
,
Uccellini
,
K.
,
Snyder
,
J. J.
,
Israni
,
A. K.
, and
Kasiske
,
B. L.
,
2017
, “
OPTN/SRTR 2015 Annual Data Report: Heart
,”
Am. J. Transplant.
,
17
(
Suppl. 1
), pp.
286
356
.
2.
Fraser
,
C. D.
, Jr.
,
Jaquiss
,
R. D.
,
Rosenthal
,
D. N.
,
Humpl
,
T.
,
Canter
,
C. E.
,
Blackstone
,
E. H.
,
Naftel
,
D. C.
,
Ichord
,
R. N.
,
Bomgaars
,
L.
,
Tweddell
,
J. S.
,
Massicotte
,
M. P.
,
Turrentine
,
M. W.
,
Cohen
,
G. A.
,
Devaney
,
E. J.
,
Pearce
,
F. B.
,
Carberry
,
K. E.
,
Kroslowitz
,
R.
, and
Almond
,
C. S.
,
2012
, “
Prospective Trial of a Pediatric Ventricular Assist Device
,”
N. Engl. J. Med.
,
367
(
6
), pp.
532
541
.
3.
Canter
,
C. E.
,
Shaddy
,
R. E.
,
Bernstein
,
D.
,
Hsu
,
D. T.
,
Chrisant
,
M. R.
,
Kirklin
,
J. K.
,
Kanter
,
K. R.
,
Higgins
,
R. S.
,
Blume
,
E. D.
,
Rosenthal
,
D. N.
,
Boucek
,
M. M.
,
Uzark
,
K. C.
,
Friedman
,
A. H.
, and
Young
,
J. K.
,
2007
, “
Indications for Heart Transplantation in Pediatric Heart Disease: A Scientific Statement From the American Heart Association Council on Cardiovascular Disease in the Young; the Councils on Clinical Cardiology, Cardiovascular Nursing, and Cardiovascular Surgery and Anesthesia; and the Quality of Care and Outcomes Research Interdisciplinary Working Group
,”
Circulation
,
115
(
5
), pp.
658
676
.
4.
Mah
,
D.
,
Singh
,
T. P.
,
Thiagarajan
,
R. R.
,
Gauvreau
,
K.
,
Piercey
,
G. E.
,
Blume
,
E. D.
,
Fynn-Thompson
,
F.
, and
Almond
,
C. S.
,
2009
, “
Incidence and Risk Factors for Mortality in Infants Awaiting Heart Transplantation in the USA
,”
J. Heart Lung Transplant.
,
28
(
12
), pp.
1292
1298
.
5.
Potapov
,
E. V.
,
Stiller
,
B.
, and
Hetzer
,
R.
,
2007
, “
Ventricular Assist Devices in Children: Current Achievements and Future Perspectives
,”
Pediatr. Transplant.
,
11
(
3
), pp.
241
255
.
6.
Blume
,
E. D.
,
Rosenthal
,
D. N.
,
Rossano
,
J. W.
,
Baldwin
,
J. T.
,
Eghtesady
,
P.
,
Morales
,
D. L.
,
Cantor
,
R. S.
,
Conway
,
J.
,
Lorts
,
A.
,
Almond
,
C. S.
,
Naftel
,
D. C.
, and
Kirklin
,
J. K.
,
2016
, “
Outcomes of Children Implanted With Ventricular Assist Devices in the United States: First Analysis of the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS)
,”
J. Heart Lung Transplant.
,
35
(
5
), pp.
578
584
.
7.
Morales
,
D. L.
,
Almond
,
C. S.
,
Jaquiss
,
R. D.
,
Rosenthal
,
D. N.
,
Naftel
,
D. C.
,
Massicotte
,
M. P.
,
Humpl
,
T.
,
Turrentine
,
M. W.
,
Tweddell
,
J. S.
,
Cohen
,
G. A.
,
Kroslowitz
,
R.
,
Devaney
,
E. J.
,
Canter
,
C. E.
,
Fynn-Thompson
,
F.
,
Reinhartz
,
O.
,
Imamura
,
M.
,
Ghanayem
,
N. S.
,
Buchholz
,
H.
,
Furness
,
S.
,
Mazor
,
R.
,
Gandhi
,
S. K.
, and
Fraser
,
C. D.
, Jr.
,
2011
, “
Bridging Children of All Sizes to Cardiac Transplantation: The Initial Multicenter North American Experience With the Berlin Heart EXCOR Ventricular Assist Device
,”
J. Heart Lung Transplant.
,
30
(
1
), pp.
1
8
.
8.
Gaines
,
W. E.
,
Pierce
,
W. S.
,
Donachy
,
J. H.
,
Rosenberg
,
G.
,
Landis
,
D. L.
,
Richenbacher
,
W. E.
, and
Waldhausen
,
J. A.
,
1985
, “
The Pennsylvania State University Paracorporeal Ventricular Assist Pump: Optimal Methods of Use
,”
World J. Surg.
,
9
(
1
), pp.
47
53
.
9.
McBride
,
L. R.
,
Naunheim
,
K. S.
,
Fiore
,
A. C.
,
Moroney
,
D. A.
, and
Swartz
,
M. T.
,
1999
, “
Clinical Experience With 111 Thoratec Ventricular Assist Devices
,”
Ann. Thorac. Surg.
,
67
(
5
), pp.
1233
1238
.
10.
Weiss
,
W. J.
,
Carney
,
E. L.
,
Clark
,
J. B.
,
Peterson
,
R.
,
Cooper
,
T. K.
,
Nifong
,
T. P.
,
Siedlecki
,
C. A.
,
Hicks
,
D.
,
Doxtater
,
B.
,
Lukic
,
B.
,
Yeager
,
E.
,
Reibson
,
J.
,
Cysyk
,
J.
,
Rosenberg
,
G.
, and
Pierce
,
W. S.
,
2012
, “
Chronic In Vivo Testing of the Penn State Infant Ventricular Assist Device
,”
ASAIO J.
,
58
(
1
), pp.
65
72
.
11.
Cooper
,
B. T.
,
Roszelle
,
B. N.
,
Long
,
T. C.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2010
, “
The Influence of Operational Protocol on the Fluid Dynamics in the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device: The Effect of End-Diastolic Delay
,”
Artif. Organs
,
34
(
4
), pp. E122–E133.
12.
Deutsch
,
S.
,
Tarbell
,
J. M.
,
Manning
,
K. B.
,
Rosenberg
,
G.
, and
Fontaine
,
A. A.
,
2006
, “
Experimental Fluid Mechanics of Pulsatile Artificial Blood Pumps
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
65
86
.
13.
Roszelle
,
B. N.
,
Cooper
,
B. T.
,
Long
,
T. C.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2008
, “
The 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device: Flow Field Observations at a Reduced Beat Rate With Application to Weaning
,”
ASAIO J.
,
54
(
3
), pp.
325
331
.
14.
Roszelle
,
B. N.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2010
, “
A Parametric Study of Valve Orientation on the Flow Patterns of the Penn State Pulsatile Pediatric Ventricular Assist Device
,”
ASAIO J.
,
56
(
4
), pp.
356
363
.
15.
Roszelle
,
B. N.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2010
, “
Flow Visualization of Three-Dimensionality Inside the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
439
455
.
16.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
,
2003
, “
Diaphragm Motion Affects Flow Patterns in an Artificial Heart
,”
Artif. Organs
,
27
(
12
), pp.
1102
1109
.
17.
Schonberger
,
M.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2012
, “
The Influence of Device Position on the Flow Within the Penn State 12 cc Pediatric Ventricular Assist Device
,”
ASAIO J.
,
58
(
5
), pp.
481
493
.
18.
Avrahami
,
I.
,
Rosenfeld
,
M.
,
Raz
,
S.
, and
Einav
,
S.
,
2006
, “
Numerical Model of Flow in a Sac-Type Ventricular Assist Device
,”
Artif. Organs
,
30
(
7
), pp.
529
538
.
19.
Donahue
,
T. L.
,
Rosenberg
,
G.
,
Jacobs
,
C. R.
, and
Weiss
,
W. J.
,
2003
, “
Finite Element Analysis of Stresses Developed in Blood Sacs of a Pusherplate Blood Pump
,”
Comput. Methods Biomech. Biomed. Eng.
,
6
(
1
), pp.
7
15
.
20.
Marom
,
G.
,
Chiu
,
W. C.
,
Crosby
,
J. R.
,
DeCook
,
K. J.
,
Prabhakar
,
S.
,
Horner
,
M.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2014
, “
Numerical Model of Full-Cardiac Cycle Hemodynamics in a Total Artificial Heart and the Effect of Its Size on Platelet Activation
,”
J. Cardiovasc. Transl. Res.
,
7
(
9
), pp.
788
796
.
21.
Long
,
C. C.
,
Marsden
,
A. L.
, and
Bazilevs
,
Y.
,
2014
, “
Shape Optimization of Pulsatile Ventricular Assist Devices Using FSI to Minimize Thrombotic Risk
,”
Comput. Mech.
,
54
(
4
), pp.
921
932
.
22.
Long
,
C. C.
,
Marsden
,
A. L.
, and
Bazilevs
,
Y.
,
2013
, “
Fluid–Structure Interaction Simulation of Pulsatile Ventricular Assist Devices
,”
Comput. Mech.
,
52
(
5
), pp.
971
981
.
23.
Haut Donahue
,
T. L.
,
Dehlin
,
W.
,
Gillespie
,
J.
,
Weiss
,
W. J.
, and
Rosenberg
,
G.
,
2009
, “
Finite Element Analysis of Stresses Developed in the Blood Sac of a Left Ventricular Assist Device
,”
Med. Eng. Phys.
,
31
(
4
), pp.
454
460
.
24.
Medvitz
,
R. B.
,
Kreider
,
J. W.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Paterson
,
E. G.
,
2007
, “
Development and Validation of a Computational Fluid Dynamics Methodology for Simulation of Pulsatile Left Ventricular Assist Devices
,”
ASAIO J.
,
53
(
2
), pp.
122
131
.
25.
Avrahami
,
I.
,
Rosenfeld
,
M.
, and
Einav
,
S.
,
2006
, “
The Hemodynamics of the Berlin Pulsatile VAD and the Role of Its MHV Configuration
,”
Ann. Biomed. Eng.
,
34
(
9
), pp.
1373
1388
.
26.
Rosenberg
,
G.
,
Phillips
,
W.
,
Landis
,
D.
, and
Pierce
,
W. S.
,
1981
, “
Design and Evaluation of the Pennsylvania State University Mock Circulatory System
,”
ASAIO J.
,
4
(
2
), pp.
41
49
.
27.
Abraham
,
G. A.
,
Frontini
,
P. M.
, and
Cuadrado
,
T. R.
,
1997
, “
Physical and Mechanical Behavior of Sterilized Biomedical Segmented Polyurethanes
,”
J. Appl. Polym. Sci.
,
65
(
6
), pp.
1193
1203
.
28.
Roland
,
C. M.
,
Twigg
,
J. N.
,
Vu
,
Y.
, and
Mott
,
P. H.
,
2007
, “
High Strain Rate Mechanical Behavior of Polyurea
,”
Polymer
,
48
(
2
), pp.
574
578
.
29.
Wu
,
W.
,
Pott
,
D.
,
Mazza
,
B.
,
Sironi
,
T.
,
Dordoni
,
E.
,
Chiastra
,
C.
,
Petrini
,
L.
,
Pennati
,
G.
,
Dubini
,
G.
,
Steinseifer
,
U.
,
Sonntag
,
S.
,
Kuetting
,
M.
, and
Migliavacca
,
F.
,
2016
, “
Fluid–Structure Interaction Model of a Percutaneous Aortic Valve: Comparison With an In Vitro Test and Feasibility Study in a Patient-Specific Case
,”
Ann. Biomed. Eng.
,
44
(
2
), pp.
590
603
.
30.
Sturla
,
F.
,
Votta
,
E.
,
Stevanella
,
M.
,
Conti
,
C. A.
, and
Redaelli
,
A.
,
2013
, “
Impact of Modeling Fluid–Structure Interaction in the Computational Analysis of Aortic Root Biomechanics
,”
Med. Eng. Phys.
,
35
(
12
), pp.
1721
1730
.
31.
Piatti
,
F.
,
Sturla
,
F.
,
Marom
,
G.
,
Sheriff
,
J.
,
Claiborne
,
T. E.
,
Slepian
,
M. J.
,
Redaelli
,
A.
, and
Bluestein
,
D.
,
2015
, “
Hemodynamic and Thrombogenic Analysis of a Trileaflet Polymeric Valve Using a Fluid–Structure Interaction Approach
,”
J. Biomech.
,
48
(
13
), pp.
3650
3658
.
32.
Lau
,
K. D.
,
Diaz
,
V.
,
Scambler
,
P.
, and
Burriesci
,
G.
,
2010
, “
Mitral Valve Dynamics in Structural and Fluid–Structure Interaction Models
,”
Med. Eng. Phys.
,
32
(
9
), pp.
1057
1064
.
33.
Weinberg
,
E. J.
, and
Kaazempur Mofrad
,
M. R.
,
2007
, “
Transient, Three-Dimensional, Multiscale Simulations of the Human Aortic Valve
,”
Cardiovasc. Eng.
,
7
(
4
), pp.
140
155
.
34.
Einstein
,
D. R.
,
Kunzelman
,
K. S.
,
Reinhall
,
P. G.
,
Nicosia
,
M. A.
, and
Cochran
,
R. P.
,
2005
, “
Non-Linear Fluid-Coupled Computational Model of the Mitral Valve
,”
J. Heart Valve Dis.
,
14
(
3
), pp.
376
385
.
35.
Hallquist
,
J. O.
,
2006
, “
Simplified Arbitrary Lagrangian–Eulerian
,”
LS-DYNA Theory Manual
,
Livermore Software Technology Corporation (LSTC)
,
Livermore, CA
, Chap. 14.
36.
Marom
,
G.
,
2015
, “
Numerical Methods for Fluid–Structure Interaction Models of Aortic Valves
,”
Arch. Comput. Methods Eng.
,
22
(
4
), pp.
595
620
.
37.
Hallquist
,
J. O.
,
2007
,
LS-DYNA Keyword User's Manual
,
Livermore Software Technology Corporation (LSTC)
,
Livermore, CA
.
38.
Wu
,
J.
,
Liu
,
J.
, and
Du
,
Y.
,
2007
, “
Experimental and Numerical Study on the Flight and Penetration Properties of Explosively-Formed Projectile
,”
Int. J. Impact Eng.
,
34
(
7
), pp.
1147
1162
.
39.
Daily
,
B. B.
,
Pettitt
,
T. W.
,
Sutera
,
S. P.
, and
Pierce
,
W. S.
,
1996
, “
Pierce-Donachy Pediatric VAD: Progress in Development
,”
Ann. Thorac. Surg.
,
61
(
1
), pp.
437
443
.
40.
Bluestein
,
D.
,
Chandran
,
K. B.
, and
Manning
,
K. B.
,
2010
, “
Towards Non-Thrombogenic Performance of Blood Recirculating Devices
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
1236
1256
.
41.
Liu
,
Q.
,
Runt
,
J.
,
Felder
,
G.
,
Rosenberg
,
G.
,
Snyder
,
A. J.
,
Weiss
,
W. J.
,
Lewis
,
J.
, and
Werley
,
T.
,
2000
, “
In Vivo and In Vitro Stability of Modified Poly(urethaneurea) Blood Sacs
,”
J. Biomater. Appl.
,
14
(
4
), pp.
349
366
.
42.
Bachmann
,
C.
,
Hugo
,
G.
,
Rosenberg
,
G.
,
Deutsch
,
S.
,
Fontaine
,
A.
, and
Tarbell
,
J. M.
,
2000
, “
Fluid Dynamics of a Pediatric Ventricular Assist Device
,”
Artif. Organs
,
24
(
5
), pp.
362
372
.
43.
Baldwin
,
J. T.
,
Borovetz
,
H. S.
,
Duncan
,
B. W.
,
Gartner
,
M. J.
,
Jarvik
,
R. K.
,
Weiss
,
W. J.
, and
Hoke
,
T. R.
,
2006
, “
The National Heart, Lung, and Blood Institute Pediatric Circulatory Support Program
,”
Circulation
,
113
(
1
), pp.
147
155
.
44.
Fraser
,
K. H.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2011
, “
The Use of Computational Fluid Dynamics in the Development of Ventricular Assist Devices
,”
Med. Eng. Phys.
,
33
(
3
), pp.
263
280
.
45.
Konig
,
C. S.
,
Clark
,
C.
, and
Mokhtarzadeh-Dehghan
,
M. R.
,
1999
, “
Investigation of Unsteady Flow in a Model of a Ventricular Assist Device by Numerical Modelling and Comparison With Experiment
,”
Med. Eng. Phys.
,
21
(
1
), pp.
53
64
.
46.
Behbahani
,
M.
,
Behr
,
M.
,
Hormes
,
M.
,
Steinseifer
,
U.
,
Arora
,
D.
,
Coronado
,
O.
, and
Pasquali
,
M.
,
2009
, “
A Review of Computational Fluid Dynamics Analysis of Blood Pumps
,”
Eur. J. Appl. Math.
,
20
(
4
), pp.
363
397
.
47.
Medvitz
,
R. B.
,
Reddy
,
V.
,
Deutsch
,
S.
,
Manning
,
K. B.
, and
Paterson
,
E. G.
,
2009
, “
Validation of a CFD Methodology for Positive Displacement LVAD Analysis Using PIV Data
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111009
.
You do not currently have access to this content.