The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

References

References
1.
Sakalihasan
,
N.
,
Limet
,
R.
, and
Defawe
,
O.
,
2005
, “
Abdominal Aortic Aneurysm
,”
Lancet
,
365
(
9470
), pp.
1577
1589
.
2.
Upchurch
,
G. R.
, and
Schaub
,
T. A.
,
2006
, “
Abdominal Aortic Aneurysm
,”
Am. Fam. Phys.
,
73
(7), pp.
1198
1206
.
3.
Erbel
,
R.
,
Aboyans
,
V.
,
Boileau
,
C.
,
Bossone
,
E.
,
Di Bartolomeo
,
R.
,
Eggebrecht
,
H.
,
Evangelista
,
A.
,
Falk
,
V.
,
Frank
,
H.
,
Gaemperli
,
O.
,
Grabenwöger
,
M.
,
Haverich
,
A.
,
Iung
,
B.
,
Manolis
,
A. J.
,
Meijboom
,
F.
,
Nienaber
,
C. A.
,
Roffi
,
M.
,
Rousseau
,
H.
,
Sechtem
,
U.
,
Sirnes
,
P. A.
,
Von Allmen
,
R. S.
,
Vrints
,
C. J. M.
,
Zamorano
,
J. L.
,
Achenbach
,
S.
,
Baumgartner
,
H.
,
Bax
,
J. J.
,
Bueno
,
H.
,
Dean
,
V.
,
Deaton
,
C.
,
Erol
,
Ç.
,
Fagard
,
R.
,
Ferrari
,
R.
,
Hasdai
,
D.
,
Hoes
,
A.
,
Kirchhof
,
P.
,
Knuuti
,
J.
,
Kolh
,
P.
,
Lancellotti
,
P.
,
Linhart
,
A.
,
Nihoyannopoulos
,
P.
,
Piepoli
,
M. F.
,
Ponikowski
,
P.
,
Tamargo
,
J. L.
,
Tendera
,
M.
,
Torbicki
,
A.
,
Wijns
,
W.
,
Windecker
,
S.
,
Czerny
,
M.
,
Deanfield
,
J.
,
Di Mario
,
C.
,
Pepi
,
M.
,
Taboada
,
M. J. S.
,
Van Sambeek
,
M. R.
, and
Vlachopoulos
,
C.
,
2014
, “
2014 ESC Guidelines on the Diagnosis and Treatment of Aortic Diseases
,”
Eur. Heart J.
,
35
(
41
), pp.
2873
2926
.
4.
Fillinger
,
M.
,
2007
, “
Who Should We Operate On and How Do We Decide: Predicting Rupture and Survival in Patients With Aortic Aneurysm
,”
Semin. Vasc. Surg.
,
20
(
2
), pp.
121
127
.
5.
Darling
,
R.
,
Messina
,
C.
,
Brewster
,
D.
, and
Ottinger
,
L.
,
1977
, “
Autopsy Study of Unoperated Abdominal Aortic Aneurysms
,”
Circulation
,
56
(Suppl.3), pp. 161–164.
6.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
,
2003
, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
,
37
(
4
), pp.
724
732
.
7.
Venkatasubramaniam
,
A. K.
,
Fagan
,
M. J.
,
Mehta
,
T.
,
Mylankal
,
K. J.
,
Ray
,
B.
,
Kuhan
,
G.
,
Chetter
,
I. C.
, and
McCollum
,
P. T.
,
2004
, “
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-Ruptured Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
,
28
(2), pp.
168
176
.
8.
Doyle
,
B. J.
,
McGloughlin
,
T. M.
,
Miller
,
K.
,
Powell
,
J. T.
, and
Norman
,
P. E.
,
2014
, “
Regions of High Wall Stress Can Predict the Future Location of Rupture of Abdominal Aortic Aneurysm
,”
Cardiovasc. Intervent. Radiol.
,
37
(
3
), pp.
815
818
.
9.
Vande Geest
,
J. P.
,
Wang
,
D. H. J.
,
Wisniewski
,
S. R.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Towards a Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
34
(
7
), pp.
1098
1106
.
10.
Gasser
,
T. C.
,
Auer
,
M.
,
Labruto
,
F.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2010
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms: Model Complexity Versus Predictability of Finite Element Simulations
,”
Eur. J. Vasc. Endovasc. Surg.
,
40
(
2
), pp.
176
185
.
11.
Doyle
,
B. J.
,
Coyle
,
P.
,
Kavanagh
,
E. G.
,
Grace
,
P. A.
, and
Mcgloughlin
,
T. M.
,
2010
, “
A Finite Element Analysis Rupture Index (FEARI) Assessment of Electively Repaired and Symptomatic/Ruptured Abdominal Aortic Aneurysms
,”
6th World Congress of Biomechanics
(
WCB
), Singapore, Aug. 1–6, pp.
883
886
.
12.
Rodriguez
,
J. F.
,
Ruiz
,
C.
,
Doblaré
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy
,”
ASME J. Biomech. Eng.
,
130
(
2
), p. 021023.
13.
Finol
,
E. A.
,
Keyhani
,
K.
,
Amon
,
C. H.
, and
Raymond
,
J.
,
2003
, “
The Effect of Asymmetry in Abdominal Aortic Aneurysms Under Physiologically Realistic Pulsatile Flow Conditions
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp. 207–217.
14.
Tang
,
A.
,
Kauffmann
,
C.
,
Tremblay-Paquet
,
S.
,
Elkouri
,
S.
,
Steinmetz
,
O.
,
Morin-Roy
,
F.
,
Cloutier-Gill
,
L.
, and
Soulez
,
G.
,
2014
, “
Morphologic Evaluation of Ruptured and Symptomatic Abdominal Aortic Aneurysm by Three-Dimensional Modeling
,”
J. Vasc. Surg.
,
59
(
4
), pp.
894
902
.
15.
Fillinger
,
M. F.
,
Racusin
,
J.
,
Baker
,
R. K.
,
Cronenwett
,
J. L.
,
Teutelink
,
A.
,
Schermerhorn
,
M. L.
,
Zwolak
,
R. M.
,
Powell
,
R. J.
,
Walsh
,
D. B.
, and
Rzucidlo
,
E. M.
,
2004
, “
Anatomic Characteristics of Ruptured Abdominal Aortic Aneurysm on Conventional CT Scans: Implications for Rupture Risk
,”
J. Vasc. Surg.
,
39
(
6
), pp.
1243
1252
.
16.
Raut
,
S. S.
,
Jana
,
A.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2013
, “
The Importance of Patient-Specific Regionally Varying Wall Thickness in Abdominal Aortic Aneurysm Biomechanics
,”
ASME J. Biomech. Eng.
,
135
(
8
), p. 081010.
17.
Mower
,
W. R.
,
Baraff
,
L. J.
, and
Sneyd
,
J.
,
1993
, “
Stress Distributions in Vascular Aneurysms: Factors Affecting Risk of Aneurysm Rupture
,”
J. Surg. Res.
,
55
(
2
), pp.
155
161
.
18.
Giannoglou
,
G. E.
,
Giannakoulas
,
G.
,
Soulis
,
J.
,
Chatzizisis
,
Y.
,
Perdikides
,
T.
,
Melas
,
N.
,
Parcharidis
,
G.
, and
Louridas
,
G.
,
2006
, “
Predicting the Risk of Rupture of Abdominal Aortic Aneurysms by Utilizing Various Geometrical Parameters: Revisiting the Diameter Criterion
,”
Angiology
,
57
(
4
), pp.
487
494
.
19.
Nyilas
,
R. D.
,
Ng
,
S. M. L.
,
Leung
,
J.
, and
Xu
,
X. Y.
,
2005
, “
Towards a New Geometric Approach to Assess the Risk of Rupture of Abdominal Aortic Aneurysms Using Patient Specific Modelling
,”
Summer Bioengineering Conference
, Vail, CO, June 22–26, pp. 1246–1247.
20.
Wang
,
D.
,
Makaroun
,
M.
,
Webster
,
M.
, and
Vorp
,
D. A.
,
2002
, “
Effect of Intraluminal Thrombus on Wall Stress in Patient Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
36
(
3
), pp.
598
604
.
21.
Koole
,
D.
,
Zandvoort
,
H. J. A.
,
Schoneveld
,
A.
,
Vink
,
A.
,
Vos
,
J. A.
,
Van Den Hoogen
,
L. L.
,
De Vries
,
J. P. P. M.
,
Pasterkamp
,
G.
,
Moll
,
F. L.
, and
Van Herwaarden
,
J. A.
,
2013
, “
Intraluminal Abdominal Aortic Aneurysm Thrombus Is Associated With Disruption of Wall Integrity
,”
J. Vasc. Surg.
,
57
(
1
), pp.
77
83
.
22.
Polzer
,
S.
,
Gasser
,
T. C.
,
Swedenborg
,
J.
, and
Bursa
,
J.
,
2011
, “
The Impact of Intraluminal Thrombus Failure on the Mechanical Stress in the Wall of Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
,
41
(
4
), pp.
467
473
.
23.
Riveros
,
F.
,
Martufi
,
G.
,
Gasser
,
T. C.
, and
Rodriguez-Matas
,
J. F.
,
2015
, “
On the Impact of Intraluminal Thrombus Mechanical Behavior in AAA Passive Mechanics
,”
Ann. Biomed. Eng.
,
43
(
9
), pp.
2253
2264
.
24.
Shum
,
J.
,
Xu
,
A.
,
Chatnuntawech
,
I.
, and
Finol
,
E. A.
,
2011
, “
A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
249
259
.
25.
Shum
,
J.
,
Di Martino
,
E. S.
,
Goldhammer
,
A.
,
Goldman
,
D. H.
,
Acker
,
L. C.
,
Patel
,
G.
,
Ng
,
J. H.
,
Martufi
,
G.
, and
Finol
,
E. A.
,
2010
, “
Semiautomatic Vessel Wall Detection and Quantification of Wall Thickness in Computed Tomography Images of Human Abdominal Aortic Aneurysms
,”
Med. Phys.
,
37
(
2
), pp.
638
648
.
26.
Raut
,
S. S.
,
Liu
,
P.
, and
Finol
,
E. A.
,
2015
, “
An Approach for Patient-Specific Multi-Domain Vascular Mesh Generation Featuring Spatially Varying Wall Thickness Modeling
,”
J. Biomech.
,
48
(
10
), pp.
1972
1981
.
27.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.
28.
Kroon
,
D. J.
,
2011
, “
Patch Curvature
,” MathWorks, Natick, MA, accessed May 13, 2016, http://www.mathworks.com/matlabcentral/fileexchange/32573-patch-curvature
29.
Antiga
,
L.
,
2006
, “
VMTK—Vascular Modeling Toolkit
,” VMTK, San Francisco, CA, accessed Apr. 27, 2015, http://www.vmtk.org
30.
Antiga
,
L.
,
Ene-Iordache
,
B.
, and
Remuzzi
,
A.
,
2003
, “
Computational Geometry for Patient-Specific Reconstruction and Meshing of Blood Vessels From MR and CT Angiography
,”
IEEE Trans. Med. Imaging
,
22
(
5
), pp.
674
684
.
31.
Raut
,
S. S.
,
Chandra
,
S.
,
Shum
,
J.
, and
Finol
,
E. A.
,
2013
, “
The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1459
1477
.
32.
O'Leary
,
S. A.
,
Healey
,
D. A.
,
Kavanagh
,
E. G.
,
Walsh
,
M. T.
,
McGloughlin
,
T. M.
, and
Doyle
,
B. J.
,
2014
, “
The Biaxial Biomechanical Behavior of Abdominal Aortic Aneurysm Tissue
,”
Ann. Biomed. Eng.
,
42
(
12
), pp.
2440
2450
.
33.
Hans
,
S. S.
,
Jareunpoon
,
O.
,
Balasubramaniam
,
M.
, and
Zelenock
,
G. B.
,
2005
, “
Size and Location of Thrombus in Intact and Ruptured Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
41
(
4
), pp.
584
588
.
34.
Zelaya
,
J. E.
,
Goenezen
,
S.
,
Dargon
,
P. T.
,
Azarbal
,
A.-F.
, and
Rugonyi
,
S.
,
2014
, “
Improving the Efficiency of Abdominal Aortic Aneurysm Wall Stress Computations
,”
PLoS One
,
9
(
7
), p.
e101353
.
35.
Barocas
,
V. H.
,
2007
, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
611
618
.
You do not currently have access to this content.