A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.

References

References
1.
Martin
,
B. A.
,
Labuda
,
R.
,
Royston
,
T. J.
,
Oshinski
,
J. N.
,
Iskandar
,
B.
, and
Loth
,
F.
,
2010
, “
Spinal Subarachnoid Space Pressure Measurements in an In Vitro Spinal Stenosis Model: Implications on Syringomyelia Theories
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111007
.
2.
Wostyn
,
P.
,
Audenaert
,
K.
, and
De Deyn
,
P. P.
,
2009
, “
More Advanced Alzheimer's Disease May Be Associated With a Decrease in Cerebrospinal Fluid Pressure
,”
Cerebrospinal Fluid Res.
,
6
(
1
), p.
1
.
3.
Bunck
,
A. C.
,
Kroeger
,
J. R.
,
Juettner
,
A.
,
Brentrup
,
A.
,
Fiedler
,
B.
,
Crelier
,
G. R.
,
Martin
,
B. A.
,
Heindel
,
W.
,
Maintz
,
D.
, and
Schwindt
,
W.
,
2012
, “
Magnetic Resonance 4D Flow Analysis of Cerebrospinal Fluid Dynamics in Chiari I Malformation With and Without Syringomyelia
,”
Eur. Radiol.
,
22
(
9
), pp.
1860
1870
.
4.
Bradley
,
W. G.
, Jr.
,
Scalzo
,
D.
,
Queralt
,
J.
,
Nitz
,
W. N.
,
Atkinson
,
D. J.
, and
Wong
,
P.
,
1996
, “
Normal-Pressure Hydrocephalus: Evaluation With Cerebrospinal Fluid Flow Measurements at MR Imaging
,”
Radiology
,
198
(
2
), pp.
523
529
.
5.
Simpson
,
K.
,
Baranidharan
,
G.
, and
Gupta
,
S.
,
2012
,
Spinal Interventions in Pain Management
,
Oxford University Press, Oxford, UK
.
6.
Papisov
,
M. I.
,
Belov
,
V. V.
, and
Gannon
,
K. S.
,
2013
, “
Physiology of the Intrathecal Bolus: The Leptomeningeal Route for Macromolecule and Particle Delivery to CNS
,”
Mol. Pharmaceutics
,
10
(
5
), pp.
1522
1532
.
7.
Xie
,
L.
,
Kang
,
H.
,
Xu
,
Q.
,
Chen
,
M. J.
,
Liao
,
Y.
,
Thiyagarajan
,
M.
,
O'Donnell
,
J.
,
Christensen
,
D. J.
,
Nicholson
,
C.
,
Iliff
,
J. J.
,
Takano
,
T.
,
Deane
,
R.
, and
Nedergaard
,
M.
,
2013
, “
Sleep Drives Metabolite Clearance From the Adult Brain
,”
Science
,
342
(
6156
), pp.
373
377
.
8.
Weller
,
R. O.
,
Djuanda
,
E.
,
Yow
,
H. Y.
, and
Carare
,
R. O.
,
2009
, “
Lymphatic Drainage of the Brain and the Pathophysiology of Neurological Disease
,”
Acta Neuropathol.
,
117
(
1
), pp.
1
14
.
9.
Martin
,
B. A.
,
Kalata
,
W.
,
Shaffer
,
N.
,
Fischer
,
P.
,
Luciano
,
M.
, and
Loth
,
F.
,
2013
, “
Hydrodynamic and Longitudinal Impedance Analysis of Cerebrospinal Fluid Dynamics at the Craniovertebral Junction in Type I Chiari Malformation
,”
PloS One
,
8
(
10
), p.
e75335
.
10.
Martin
,
B. A.
,
Kalata
,
W.
,
Loth
,
F.
,
Royston
,
T. J.
, and
Oshinski
,
J. N.
,
2005
, “
Syringomyelia Hydrodynamics: An In Vitro Study Based on In Vivo Measurements
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1110
1120
.
11.
Martin
,
B. A.
,
Yiallourou
,
T. I.
,
Pahlavian
,
S. H.
,
Thyagaraj
,
S.
,
Bunck
,
A. C.
,
Loth
,
F.
,
Sheffer
,
D. B.
,
Kroger
,
J. R.
, and
Stergiopulos
,
N.
,
2016
, “
Inter-Operator Reliability of Magnetic Resonance Image-Based Computational Fluid Dynamics Prediction of Cerebrospinal Fluid Motion in the Cervical Spine
,”
Ann. Biomed. Eng.
,
44
(
5
), pp.
1524
1537
.
12.
Yiallourou
,
T.
,
Schmid Daners
,
M.
,
Kurtcuoglu
,
V.
,
Haba-Rubio
,
J.
,
Heinzer
,
R.
,
Fornari
,
E.
,
Santini
,
F.
,
Sheffer
,
D. B.
,
Stergiopulos
,
N.
, and
Martin
,
B. A.
,
2015
, “
Continuous Positive Airway Pressure Alters Cranial Blood Flow and Cerebrospinal Fluid Dynamics at the Craniovertebral Junction
,”
Interdiscip. Neurosurg.
,
2
(
3
), pp.
152
159
.
13.
Gupta
,
A.
,
Church
,
D.
,
Barnes
,
D.
, and
Hassan
,
A.
,
2009
, “
Cut to the Chase: On the Need for Genotype-Specific Soft Tissue Sarcoma Trials
,”
Ann. Oncol.
,
20
(
3
), pp.
399
400
.
14.
Gupta
,
S.
,
Soellinger
,
M.
,
Grzybowski
,
D. M.
,
Boesiger
,
P.
,
Biddiscombe
,
J.
,
Poulikakos
,
D.
, and
Kurtcuoglu
,
V.
,
2010
, “
Cerebrospinal Fluid Dynamics in the Human Cranial Subarachnoid Space: An Overlooked Mediator of Cerebral Disease—I: Computational Model
,”
J. R. Soc. Interface
,
7
(
49
), pp.
1195
1204
.
15.
Loth
,
F.
,
Yardimci
,
M. A.
, and
Alperin
,
N.
,
2001
, “
Hydrodynamic Modeling of Cerebrospinal Fluid Motion Within the Spinal Cavity
,”
ASME J. Biomech. Eng.
,
123
(
1
), pp.
71
79
.
16.
San
,
O.
, and
Staples
,
A. E.
,
2012
, “
An Improved Model for Reduced-Order Physiological Fluid Flows
,”
J. Mech. Med. Biol.
,
12
(
3
), p.
1250052
.
17.
Kalata
,
W.
,
Martin
,
B. A.
,
Oshinski
,
J. N.
,
Jerosch-Herold
,
M.
,
Royston
,
T. J.
, and
Loth
,
F.
,
2009
, “
MR Measurement of Cerebrospinal Fluid Velocity Wave Speed in the Spinal Canal
,”
IEEE Trans. Biomed. Eng.
,
56
(
6
), pp.
1765
1768
.
18.
Tangen
,
K. M.
,
Hsu
,
Y.
,
Zhu
,
D. C.
, and
Linninger
,
A. A.
,
2015
, “
CNS Wide Simulation of Flow Resistance and Drug Transport Due to Spinal Microanatomy
,”
J. Biomech.
,
48
(
10
), pp.
2144
2154
.
19.
Kuttler
,
A.
,
Dimke
,
T.
,
Kern
,
S.
,
Helmlinger
,
G.
,
Stanski
,
D.
, and
Finelli
,
L. A.
,
2010
, “
Understanding Pharmacokinetics Using Realistic Computational Models of Fluid Dynamics: Biosimulation of Drug Distribution Within the CSF Space for Intrathecal Drugs
,”
J. Pharmacokinet. Pharmacodyn.
,
37
(
6
), pp.
629
644
.
20.
Bertram
,
C. D.
,
2010
, “
Evaluation by Fluid/Structure-Interaction Spinal-Cord Simulation of the Effects of Subarachnoid-Space Stenosis on an Adjacent Syrinx
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061009
.
21.
Elliott
,
N. S.
,
2012
, “
Syrinx Fluid Transport: Modeling Pressure-Wave-Induced Flux Across the Spinal Pial Membrane
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031006
.
22.
Cirovic
,
S.
, and
Kim
,
M.
,
2012
, “
A One-Dimensional Model of the Spinal Cerebrospinal-Fluid Compartment
,”
ASME J. Biomech. Eng.
,
134
(
2
), p.
021005
.
23.
Lockey
,
P.
,
Poots
,
G.
, and
Williams
,
B.
,
1975
, “
Theoretical Aspects of the Attenuation of Pressure Pulses Within Cerebrospinal-Fluid Pathways
,”
Med. Biol. Eng.
,
13
(
6
), pp.
861
869
.
24.
Yiallourou
,
T. I.
,
Kroger
,
J. R.
,
Stergiopulos
,
N.
,
Maintz
,
D.
,
Martin
,
B. A.
, and
Bunck
,
A. C.
,
2012
, “
Comparison of 4D Phase-Contrast MRI Flow Measurements to Computational Fluid Dynamics Simulations of Cerebrospinal Fluid Motion in the Cervical Spine
,”
PLoS One
,
7
(
12
), p.
e52284
.
25.
Heidari Pahlavian
,
S.
,
Bunck
,
A. C.
,
Loth
,
F.
,
Shane Tubbs
,
R.
,
Yiallourou
,
T.
,
Kroeger
,
J. R.
,
Heindel
,
W.
, and
Martin
,
B. A.
,
2015
, “
Characterization of the Discrepancies Between Four-Dimensional Phase-Contrast Magnetic Resonance Imaging and In-Silico Simulations of Cerebrospinal Fluid Dynamics
,”
ASME J. Biomech. Eng.
,
137
(
5
), p.
051002
.
26.
Pahlavian
,
S. H.
,
Bunck
,
A. C.
,
Thyagaraj
,
S.
,
Giese
,
D.
,
Loth
,
F.
,
Hedderich
,
D. M.
,
Kroeger
,
J. R.
, and
Martin
,
B. A.
,
2016
, “
Accuracy of 4D Flow Measurement of Cerebrospinal Fluid Dynamics in the Cervical Spine: An In Vitro Verification Against Numerical Simulation
,”
Ann. Biomed. Eng.
,
44
(
11
), pp.
3202
3214
.
27.
Pahlavian
,
S. H.
,
Loth
,
F.
,
Luciano
,
M.
,
Oshinski
,
J.
, and
Martin
,
B. A.
,
2015
, “
Neural Tissue Motion Impacts Cerebrospinal Fluid Dynamics at the Cervical Medullary Junction: A Patient-Specific Moving-Boundary Computational Model
,”
Ann. Biomed. Eng.
,
43
(
12
), pp.
2911
2923
.
28.
Heidari Pahlavian
,
S.
,
Yiallourou
,
T.
,
Tubbs
,
R. S.
,
Bunck
,
A. C.
,
Loth
,
F.
,
Goodin
,
M.
,
Raisee
,
M.
, and
Martin
,
B. A.
,
2014
, “
The Impact of Spinal Cord Nerve Roots and Denticulate Ligaments on Cerebrospinal Fluid Dynamics in the Cervical Spine
,”
PLoS One
,
9
(
4
), p.
e91888
.
29.
Sigmund
,
E. E.
,
Suero
,
G. A.
,
Hu
,
C.
,
McGorty
,
K.
,
Sodickson
,
D. K.
,
Wiggins
,
G. C.
, and
Helpern
,
J. A.
,
2012
, “
High-Resolution Human Cervical Spinal Cord Imaging at 7 T
,”
NMR Biomed.
,
25
(
7
), pp.
891
899
.
30.
Helgeland
,
A.
,
Mardal
,
K. A.
,
Haughton
,
V.
, and
Reif
,
B. A.
,
2014
, “
Numerical Simulations of the Pulsating Flow of Cerebrospinal Fluid Flow in the Cervical Spinal Canal of a Chiari Patient
,”
J. Biomech.
,
47
(
5
), pp.
1082
1090
.
31.
Sweetman
,
B.
, and
Linninger
,
A. A.
,
2011
, “
Cerebrospinal Fluid Flow Dynamics in the Central Nervous System
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
484
496
.
32.
Martin
,
B. A.
,
Reymond
,
P.
,
Novy
,
J.
,
Baledent
,
O.
, and
Stergiopulos
,
N.
,
2012
, “
A Coupled Hydrodynamic Model of the Cardiovascular and Cerebrospinal Fluid System
,”
Am. J. Physiol. Heart Circ. Physiol.
,
302
(
7
), pp.
H1492
H1509
.
33.
Elliott
,
N. S. J.
,
Bertram
,
C. D.
,
Martin
,
B. A.
, and
Brodbelt
,
A. R.
,
2013
, “
Syringomyelia: A Review of the Biomechanics
,”
J. Fluids Struct.
,
40
, pp.
1
24
.
You do not currently have access to this content.