Right ventricular failure (RVF) is a lethal condition in diverse pathologies. Pressure overload is the most common etiology of RVF, but our understanding of the tissue structure remodeling and other biomechanical factors involved in RVF is limited. Some remodeling patterns are interpreted as compensatory mechanisms including myocyte hypertrophy, extracellular fibrosis, and changes in fiber orientation. However, the specific implications of these changes, especially in relation to clinically observable measurements, are difficult to investigate experimentally. In this computational study, we hypothesized that, with other variables constant, fiber orientation alteration provides a quantifiable and distinct compensatory mechanism during RV pressure overload (RVPO). Numerical models were constructed using a rabbit model of chronic pressure overload RVF based on intraventricular pressure measurements, CINE magnetic resonance imaging (MRI), and diffusion tensor MRI (DT-MRI). Biventricular simulations were conducted under normotensive and hypertensive boundary conditions using variations in RV wall thickness, tissue stiffness, and fiber orientation to investigate their effect on RV pump function. Our results show that a longitudinally aligned myocardial fiber orientation contributed to an increase in RV ejection fraction (RVEF). This effect was more pronounced in response to pressure overload. Likewise, models with longitudinally aligned fiber orientation required a lesser contractility for maintaining a target RVEF against elevated pressures. In addition to increased wall thickness and material stiffness (diastolic compensation), systolic mechanisms in the forms of myocardial fiber realignment and changes in contractility are likely involved in the overall compensatory responses to pressure overload.

References

References
1.
Fogel
,
M. A.
, and
Rychik
,
J.
,
1998
, “
Right Ventricular Function in Congenital Heart Disease: Pressure and Volume Overload Lesions
,”
Prog. Cardiovasc. Dis.
,
40
(
4
), pp.
343
356
.
2.
John
,
R.
,
Lee
,
S.
,
Eckman
,
P.
, and
Liao
,
K.
,
2010
, “
Right Ventricular Failure—A Continuing Problem in Patients With Left Ventricular Assist Device Support
,”
J. Cardiovasc. Transl. Res.
,
3
(
6
), pp.
604
611
.
3.
Vivo
,
R. P.
,
Cordero-Reyes
,
A. M.
,
Qamar
,
U.
,
Garikipati
,
S.
,
Trevino
,
A. R.
,
Aldeiri
,
M.
,
Loebe
,
M.
,
Bruckner
,
B. A.
,
Torre-Amione
,
G.
,
Bhimaraj
,
A.
,
Trachtenberg
,
B. H.
, and
Estep
,
J. D.
,
2013
, “
Increased Right-to-Left Ventricle Diameter Ratio is a Strong Predictor of Right Ventricular Failure After Left Ventricular Assist Device
,”
J. Heart Lung Transplant.
,
32
(
8
), pp.
792
799
.
4.
Puhlman
,
M.
,
2012
, “
Continuous-Flow Left Ventricular Assist Device and the Right Ventricle
,”
AACN Adv. Crit. Care
,
23
(
1
), pp.
86
90
.
5.
Voelkel
,
N. F.
,
Quaife
,
R. A.
,
Leinwand
,
L. A.
,
Barst
,
R. J.
,
McGoon
,
M. D.
,
Meldrum
,
D. R.
,
Dupuis
,
J.
,
Long
,
C. S.
,
Rubin
,
L. J.
,
Smart
,
F. W.
,
Suzuki
,
Y. J.
,
Gladwin
,
M.
,
Denholm
,
E. M.
, and
Gail
,
D. B.
,
2006
, “
Right Ventricular Function and Failure: Report of a National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure
,”
Circulation
,
114
(
17
), pp.
1883
1891
.
6.
Gaynor
,
S. L.
,
Maniar
,
H. S.
,
Bloch
,
J. B.
,
Steendijk
,
P.
, and
Moon
,
M. R.
,
2005
, “
Right Atrial and Ventricular Adaptation to Chronic Right Ventricular Pressure Overload
,”
Circulation
,
112
(
9
), pp.
I212
I218
.
7.
Borgdorff
,
M. A. J.
,
Bartelds
,
B.
,
Dickinson
,
M. G.
,
Steendijk
,
P.
,
de Vroomen
,
M.
, and
Berger
,
R. M. F.
,
2013
, “
Distinct Loading Conditions Reveal Various Patterns of Right Ventricular Adaptation
,”
Am. J. Physiol. Heart Circ. Physiol.
,
305
(
3
), pp.
H354
H364
.
8.
Visner
,
M. S.
,
Arentzen
,
C. E.
,
Crumbley
,
A. J.
,
Larson
,
E. V.
,
O'Connor
,
M. J.
, and
Anderson
,
R. W.
,
1986
, “
The Effects of Pressure-Induced Right Ventricular Hypertrophy on Left Ventricular Diastolic Properties and Dynamic Geometry in the Conscious Dog
,”
Circulation
,
74
(
2
), pp.
410
419
.
9.
Hill
,
M. R.
,
Simon
,
M. A.
,
Valdez-Jasso
,
D.
,
Zhang
,
W.
,
Champion
,
H. C.
, and
Sacks
,
M. S.
,
2014
, “
Structural and Mechanical Adaptations of Right Ventricle Free Wall Myocardium to Pressure Overload
,”
Ann. Biomed. Eng.
,
42
(
12
), pp.
2451
2465
.
10.
Bogaard
,
H. J.
,
Abe
,
K.
,
Noordegmaf
,
A. V.
, and
Voelkel
,
N. F.
,
2009
, “
The Right Ventricle Under Pressure: Cellular and Molecular Mechanisms of Right-Heart Failure in Pulmonary Hypertension
,”
Chest
,
135
(
3
), pp.
794
804
.
11.
Dong
,
S. J.
,
Smith
,
E. R.
, and
Tyberg
,
J. V.
,
1992
, “
Changes in the Radius of Curvature of the Ventricular Septum at End Diastole During Pulmonary Arterial and Aortic Constrictions in the Dog
,”
Circulation
,
86
(
4
), pp.
1280
1290
.
12.
Nelson
,
G. S.
,
Sayed-Ahmed
,
E. Y.
,
Kroeker
,
C. A.
,
Sun
,
Y.-H.
,
Ter Keurs
,
H. E. D. J.
,
Shrive
,
N. G.
, and
Tyberg
,
J. V.
,
2001
, “
Compression of Interventricular Septum During Right Ventricular Pressure Loading
,”
Am. J. Physiol. Heart Circ. Physiol.
,
280
(
6
), pp.
H2639
H2648
.
13.
Chua
,
J.
,
Zhou
,
W.
,
Ho
,
J. K.
,
Patel
,
N. A.
,
Mackensen
,
G. B.
, and
Mahajan
,
A.
,
2013
, “
Acute Right Ventricular Pressure Overload Compromises Left Ventricular Function by Altering Septal Strain and Rotation
,”
J. Appl. Physiol.
,
115
(
2
), pp.
186
193
.
14.
Zhang
,
X.
,
Haynes
,
P.
,
Campbell
,
K. S.
, and
Wenk
,
J. F.
,
2015
, “
Numerical Evaluation of Myofiber Orientation and Transmural Contractile Strength on Left Ventricular Function
,”
ASME J. Biomech. Eng.
,
137
(
4
), p.
044502
.
15.
Arts
,
T.
,
Bovendeerd
,
P.
,
Delhaas
,
T.
, and
Prinzen
,
F.
,
2003
, “
Modeling the Relation Between Cardiac Pump Function and Myofiber Mechanics
,”
J. Biomech.
,
36
(
5
), pp.
731
736
.
16.
Rijcken
,
J.
,
Bovendeerd
,
P. H. M.
,
Schoofs
,
A. J. G.
,
van Campen
,
D. H.
, and
Arts
,
T.
,
1999
, “
Optimization of Cardiac Fiber Orientation for Homogeneous Fiber Strain During Ejection
,”
Ann. Biomed. Eng.
,
27
(
3
), pp.
289
297
.
17.
Bovendeerd
,
P. H. M.
,
Arts
,
T.
,
Huyghe
,
J. M.
,
van Campen
,
D. H.
, and
Reneman
,
R. S.
,
1992
, “
Dependence of Local Left Ventricular Wall Mechanics on Myocardial Fiber Orientation: A Model Study
,”
J. Biomech.
,
25
(
10
), pp.
1129
1140
.
18.
Park
,
D. W.
,
Sebastiani
,
A.
,
Yap
,
C. H.
,
Simon
,
M. A.
, and
Kim
,
K.
,
2016
, “
Quantification of Coupled Stiffness and Fiber Orientation Remodeling in Hypertensive Rat Right-Ventricular Myocardium Using 3D Ultrasound Speckle Tracking With Biaxial Testing
,”
PLoS One
,
11
(
10
), p.
e0165320
.
19.
Streeter
,
D. D.
, and
Hanna
,
W. T.
,
1973
, “
Engineering Mechanics for Successive States in Canine Left Ventricular Myocardium—II: Fiber Angle and Sarcomere Length
,”
Circ. Res.
,
33
(
6
), pp.
656
664
.
20.
Nielsen
,
E.
,
Smerup
,
M.
,
Agger
,
P.
,
Frandsen
,
J.
,
Ringgard
,
S.
,
Pedersen
,
M.
,
Vestergaard
,
P.
,
Nyengaard
,
J. R.
,
Andersen
,
J. B.
,
Lunkenheimer
,
P. P.
,
Anderson
,
R. H.
, and
Hjortdal
,
V.
,
2009
, “
Normal Right Ventricular Three-Dimensional Architecture, as Assessed With Diffusion Tensor Magnetic Resonance Imaging, is Preserved During Experimentally Induced Right Ventricular Hypertrophy
,”
Anat. Rec.
,
292
(
5
), pp.
640
651
.
21.
Mekkaoui
,
C.
,
Chen
,
I. Y.
,
Chen
,
H. H.
,
Kostis
,
W. J.
,
Pereira
,
F.
,
Jackowski
,
M. P.
, and
Sosnovik
,
D. E.
,
2015
, “
Differential Response of the Left and Right Ventricles to Pressure Overload Revealed With Diffusion Tensor MRI Tractography of the Heart In Vivo
,”
J. Cardiovasc. Magn. Reson.
,
17
(
Suppl 1
), p.
O3
.
22.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
, “
Constitutive Modelling of Passive Myocardium: A Structurally Based Framework for Material Characterization
,”
Philos. Trans. R. Soc., A
,
367
(
1902
), pp.
3445
3475
.
23.
Bogaard
,
H. J.
,
Natarajan
,
R.
,
Henderson
,
S. C.
,
Long
,
C. S.
,
Kraskauskas
,
D.
,
Smithson
,
L.
,
Ockaili
,
R.
,
McCord
,
J. M.
, and
Voelkel
,
N. F.
,
2009
, “
Chronic Pulmonary Artery Pressure Elevation is Insufficient to Explain Right Heart Failure
,”
Circulation
,
120
(
20
), pp.
1951
1960
.
24.
Ryan
,
J. J.
, and
Archer
,
S. L.
,
2014
, “
The Right Ventricle in Pulmonary Arterial Hypertension: Disorders of Metabolism, Angiogenesis and Adrenergic Signaling in Right Ventricular Failure
,”
Circ. Res.
,
115
(
1
), pp.
176
188
.
25.
Sun
,
K.
,
Stander
,
N.
,
Jhun
,
C.-S.
,
Zhang
,
Z.
,
Suzuki
,
T.
,
Wang
,
G.-Y.
,
Maythem
,
S.
,
Wallace
,
A. W.
,
Tseng
,
E. E.
,
Baker
,
A. J.
,
Saloner
,
D.
,
Einstein
,
D. R.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
,
2009
, “
A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm
,”
ASME J. Biomech. Eng.
,
131
(
11
), p. 111001.
26.
Wenk
,
J. F.
,
Sun
,
K.
,
Zhang
,
Z.
,
Soleimani
,
M.
,
Ge
,
L.
,
Saloner
,
D.
,
Wallace
,
A. W.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
,
2011
, “
Regional Left Ventricular Myocardial Contractility and Stress in a Finite Element Model of Posterobasal Myocardial Infarction
,”
ASME J. Biomech. Eng.
,
133
(
4
), p. 044501.
27.
Bayer
,
J. D.
,
Blake
,
R. C.
,
Plank
,
G.
, and
Trayanova
,
N. A.
,
2012
, “
A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2243
2254
.
28.
Holmes
,
A. A.
,
Scollan
,
D. F.
, and
Winslow
,
R. L.
,
2000
, “
Direct Histological Validation of Diffusion Tensor MRI in Formaldehyde-Fixed Myocardium
,”
Magn. Reson. Med.
,
44
(
1
), pp.
157
161
.
29.
Hales
,
P. W.
,
Burton
,
R. A. B.
,
Bollensdorff
,
C.
,
Mason
,
F.
,
Bishop
,
M.
,
Gavaghan
,
D.
,
Kohl
,
P.
, and
Schneider
,
J. E.
,
2011
, “
Progressive Changes in T1, T2 and Left-Ventricular Histo-Architecture in the Fixed and Embedded Rat Heart
,”
NMR Biomed.
,
24
(
7
), pp.
836
843
.
30.
Giannakidis
,
A.
,
Gullberg
,
G. T.
,
Pennell
,
D. J.
, and
Firmin
,
D. N.
,
2016
, “
Value of Formalin Fixation for the Prolonged Preservation of Rodent Myocardial Microanatomical Organization: Evidence by MR Diffusion Tensor Imaging
,”
Anat. Rec.
,
299
(
7
), pp.
878
887
.
31.
Costa
,
K. D.
,
May-Newman
,
K.
,
Farr
,
D.
,
O'Dell
,
W. G.
,
McCulloch
,
A. D.
, and
Omens
,
J. H.
,
1997
, “
Three-Dimensional Residual Strain in Midanterior Canine Left Ventricle
,”
Am. J. Physiol.
,
273
(
4
), pp.
H1968
H1976
.
32.
Wang
,
H. M.
,
Luo
,
X. Y.
,
Gao
,
H.
,
Ogden
,
R. W.
,
Griffith
,
B. E.
,
Berry
,
C.
, and
Wang
,
T. J.
,
2014
, “
A Modified Holzapfel-Ogden Law for a Residually Stressed Finite Strain Model of the Human Left Ventricle in Diastole
,”
Biomech. Model. Mechanobiol.
,
13
(
1
), pp.
99
113
.
33.
Walker
,
J. C.
,
Ratcliffe
,
M. B.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Fata
,
B.
,
Hsu
,
E. W.
,
Saloner
,
D.
, and
Guccione
,
J. M.
,
2005
, “
MRI-Based Finite-Element Analysis of Left Ventricular Aneurysm
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
2
), pp.
H692
H700
.
34.
Vetter
,
F. J.
, and
McCulloch
,
A. D.
,
2000
, “
Three-Dimensional Stress and Strain in Passive Rabbit Left Ventricle: A Model Study
,”
Ann. Biomed. Eng.
,
28
(
7
), pp.
781
792
.
35.
Guccione
,
J. M.
, and
McCulloch
,
A. D.
,
1993
, “
Mechanics of Active Contraction in Cardiac Muscle—Part I: Constitutive Relations for Fiber Stress That Describe Deactivation
,”
ASME J. Biomech. Eng.
,
115
(
1
), pp.
72
81
.
36.
Guccione
,
J. M.
,
Waldman
,
L. K.
, and
McCulloch
,
A. D.
,
1993
, “
Mechanics of Active Contraction in Cardiac Muscle—Part II: Cylindrical Models of the Systolic Left Ventricle
,”
ASME J. Biomech. Eng.
,
115
(
1
), pp.
82
90
.
37.
Gomez
,
A. D.
,
Bull
,
D. A.
, and
Hsu
,
E. W.
,
2015
, “
Finite-Element Extrapolation of Myocardial Structure Alterations Across the Cardiac Cycle in Rats
,”
ASME J. Biomech. Eng.
,
137
(
10
), p.
101010
.
38.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.
39.
Healy
,
L. J.
,
Jiang
,
Y.
, and
Hsu
,
E. W.
,
2011
, “
Quantitative Comparison of Myocardial Fiber Structure Between Mice, Rabbit, and Sheep Using Diffusion Tensor Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson.
,
13
(
1
), p.
74
.
40.
McGill
,
L.-A.
,
Ismail
,
T. F.
,
Nielles-Vallespin
,
S.
,
Ferreira
,
P. F.
,
Scott
,
A. D.
,
Roughton
,
M.
,
Kilner
,
P. J.
,
Ho
,
S. Y.
,
McCarthy
,
K. P.
,
Gatehouse
,
P. D.
,
de Silva
,
R.
,
Speier
,
P.
,
Feiweier
,
T.
,
Mekkaoui
,
C.
,
Sosnovik
,
D. E.
,
Prasad
,
S. K.
,
Firmin
,
D. N.
, and
Pennell
,
D. J.
,
2012
, “
Reproducibility of In-Vivo Diffusion Tensor Cardiovascular Magnetic Resonance in Hypertrophic Cardiomyopathy
,”
J. Cardiovasc. Magn. Reson.
,
14
(
1
), p.
86
.
41.
Ferreira
,
P. F.
,
Kilner
,
P. J.
,
McGill
,
L.-A.
,
Nielles-Vallespin
,
S.
,
Scott
,
A. D.
,
Ho
,
S. Y.
,
McCarthy
,
K. P.
,
Haba
,
M. M.
,
Ismail
,
T. F.
,
Gatehouse
,
P. D.
,
de Silva
,
R.
,
Lyon
,
A. R.
,
Prasad
,
S. K.
,
Firmin
,
D. N.
, and
Pennell
,
D. J.
,
2014
, “
In Vivo Cardiovascular Magnetic Resonance Diffusion Tensor Imaging Shows Evidence of Abnormal Myocardial Laminar Orientations and Mobility in Hypertrophic Cardiomyopathy
,”
J. Cardiovasc. Magn. Reson.
,
16
(
1
), p.
87
.
42.
Phatak
,
N. S.
,
Maas
,
S. A.
,
Veress
,
A. I.
,
Pack
,
N. A.
,
Di Bella
,
E. V. R.
, and
Weiss
,
J. A.
,
2009
, “
Strain Measurement in the Left Ventricle During Systole With Deformable Image Registration
,”
Med. Image Anal.
,
13
(
2
), pp.
354
361
.
43.
McKellar
,
S. H.
,
Javan
,
H.
,
Bowen
,
M. E.
,
Liu
,
X.
,
Schaaf
,
C. L.
,
Briggs
,
C. M.
,
Zou
,
H.
,
Gomez
,
A. D.
,
Abdullah
,
O. M.
,
Hsu
,
E. W.
, and
Selzman
,
C. H.
,
2015
, “
Animal Model of Reversible, Right Ventricular Failure
,”
J. Surg. Res.
,
194
(
2
), pp.
327
333
.
44.
Naeije
,
R.
, and
Manes
,
A.
,
2014
, “
The Right Ventricle in Pulmonary Arterial Hypertension
,”
Eur. Respir. Rev.
,
23
(
134
), pp.
476
487
.
45.
Xi
,
C.
,
Latnie
,
C.
,
Zhao
,
X.
,
Le Tan
,
J.
,
Wall
,
S. T.
,
Genet
,
M.
,
Zhong
,
L.
, and
Lee
,
L. C.
,
2016
, “
Patient-Specific Computational Analysis of Ventricular Mechanics in Pulmonary Arterial Hypertension
,”
ASME J. Biomech. Eng.
,
138
(
11
), p. 111001.
46.
Tate
,
M. K.
,
Lawrence
,
W. S.
,
Gourley
,
R. L.
,
Zavala
,
D. L.
,
Weaver
,
L. E.
,
Moen
,
S. T.
, and
Peterson
,
J. W.
,
2011
, “
Telemetric Left Ventricular Monitoring Using Wireless Telemetry in the Rabbit Model
,”
BMC Res. Notes
,
4
(
1
), p.
320
.
47.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
,
1991
, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME J. Biomech. Eng.
,
113
(
1
), pp.
42
55
.
48.
Torrent-Guasp
,
F.
,
Buckberg
,
G. D.
,
Clemente
,
C.
,
Cox
,
J. L.
,
Coghlan
,
H. C.
, and
Gharib
,
M.
,
2001
, “
The Structure and Function of the Helical Heart and Its Buttress Wrapping—I: The Normal Macroscopic Structure of the Heart
,”
Semin. Thorac. Cardiovasc. Surg.
,
13
(
4
), pp.
301
319
.
49.
Ateshian
,
G. A.
,
2007
, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
423
445
.
50.
Genet
,
M.
,
Rausch
,
M. K.
,
Lee
,
L. C.
,
Choy
,
S.
,
Zhao
,
X.
,
Kassab
,
G. S.
,
Kozerke
,
S.
,
Guccione
,
J. M.
, and
Kuhl
,
E.
,
2015
, “
Heterogeneous Growth-Induced Prestrain in the Heart
,”
J. Biomech.
,
48
(
10
), pp.
2080
2089
.
You do not currently have access to this content.