The elbow joint is highly susceptible to joint contracture, and treating elbow contracture is a challenging clinical problem. Previously, we established an animal model to study elbow contracture that exhibited features similar to the human condition including persistent decreased range of motion (ROM) in flexion–extension and increased capsule thickness/adhesions. The objective of this study was to mechanically quantify pronation–supination in different injury models to determine if significant differences compared to control or contralateral persist long-term in our animal elbow contracture model. After surgically inducing soft tissue damage in the elbow, Injury I (anterior capsulotomy) and Injury II (anterior capsulotomy with lateral collateral ligament transection), limbs were immobilized for 6 weeks (immobilization (IM)). Animals were evaluated after the IM period or following an additional 6 weeks of free mobilization (FM). Total ROM for pronation–supination was significantly decreased compared to the uninjured contralateral limb for both IM and FM, although not different from control limbs. Specifically, for both IM and FM, total ROM for Injury I and Injury II was significantly decreased by ∼20% compared to contralateral. Correlations of measurements from flexion–extension and pronation–supination divulged that FM did not affect these motions in the same way, demonstrating that joint motions need to be studied/treated separately. Overall, injured limbs exhibited persistent motion loss in pronation–supination when comparing side-to-side differences, similar to human post-traumatic joint contracture. Future work will use this animal model to study how elbow periarticular soft tissues contribute to contracture.

References

References
1.
King
,
G. J.
,
Morrey
,
B. F.
, and
An
,
K.-N.
,
1993
, “
Stabilizers of the Elbow
,”
J. Shoulder Elbow Surg.
,
2
(
3
), pp.
165
174
.
2.
Safran
,
M. R.
, and
Baillargeon
,
D.
,
2005
, “
Soft-Tissue Stabilizers of the Elbow
,”
J. Shoulder Elbow Surg.
,
14
(
1
), pp.
S179
S185
.
3.
Cohen
,
M. S.
,
Schimmel
,
D. R.
,
Masuda
,
K.
,
Hastings
,
H.
, and
Muehleman
,
C.
,
2007
, “
Structural and Biochemical Evaluation of the Elbow Capsule After Trauma
,”
J. Shoulder Elbow Surg.
,
16
(
4
), pp.
484
490
.
4.
Jawa
,
A.
,
Jupiter
,
J. B.
, and
Ring
,
D.
,
2012
, “
Pathogenesis and Classification of Elbow Stiffness
,”
Operative Elbow Surgery
,
Churchill Livingstone/Elsevier
,
Edinburgh, UK
, pp.
409
416
.
5.
Lake
,
S. P.
,
Castile
,
R. M.
,
Borinsky
,
S.
,
Dunham
,
C. L.
,
Havlioglu
,
N.
, and
Galatz
,
L. M.
,
2016
, “
Development and Use of an Animal Model to Study Post-Traumatic Stiffness and Contracture of the Elbow
,”
J. Orthop. Res.
,
34
(
2
), pp.
354
364
.
6.
Dunham
,
C. L.
,
Castile
,
R. M.
,
Havlioglu
,
N.
,
Chamberlain
,
A. M.
,
Galatz
,
L. M.
, and
Lake
,
S. P.
,
2017
, “
Persistent Motion Loss After Free Joint Mobilization in a Rat Model of Post-Traumatic Elbow Contracture
,”
J. Shoulder Elbow Surg.
,
26
(
4
), pp.
611
618
.
7.
Charalambous
,
C. P.
, and
Morrey
,
B. F.
,
2012
, “
Posttraumatic Elbow Stiffness
,”
J. Bone Jt. Surg.
,
94
(
15
), pp.
1428
1437
.
8.
Lindenhovius
,
A. L. C.
, and
Jupiter
,
J. B.
,
2007
, “
The Posttraumatic Stiff Elbow: A Review of the Literature
,”
J. Hand Surg.
,
32
(
10
), pp.
1605
1623
.
9.
Myden
,
C.
, and
Hildebrand
,
K.
,
2011
, “
Elbow Joint Contracture After Traumatic Injury
,”
J. Shoulder Elbow Surg.
,
20
(
1
), pp.
39
44
.
10.
Hildebrand
,
K. A.
,
Holmberg
,
M.
, and
Shrive
,
N.
,
2003
, “
A New Method to Measure Post-Traumatic Joint Contractures in the Rabbit Knee
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
887
892
.
11.
Keener
,
J. D.
, and
Galatz
,
L. M.
,
2011
, “
Arthroscopic Management of the Stiff Elbow
,”
J. Am. Acad. Orthop. Surg.
,
19
(
5
), pp.
265
274
.
12.
Nesterenko
,
S.
,
Morrey
,
M. E.
,
Abdel
,
M. P.
,
An
,
K.-N.
,
Steinmann
,
S. P.
,
Morrey
,
B. F.
, and
Sanchez-Sotelo
,
J.
,
2009
, “
New Rabbit Knee Model of Posttraumatic Joint Contracture: Indirect Capsular Damage Induces a Severe Contracture
,”
J. Orthop. Res.
,
27
(
8
), pp.
1028
1032
.
13.
Trudel
,
G.
, and
Uhthoff
,
H. K.
,
2000
, “
Contractures Secondary to Immobility: Is the Restriction Articular or Muscular? An Experimental Longitudinal Study in the Rat Knee
,”
Arch. Phys. Med. Rehabil.
,
81
(
1
), pp.
6
13
.
14.
Whishaw
,
I. Q.
, and
Pellis
,
S. M.
,
1990
, “
The Structure of Skilled Forelimb Reaching in the Rat: A Proximally Driven Movement With a Single Distal Rotatory Component
,”
Behav. Brain Res.
,
41
(
1
), pp.
49
59
.
15.
Whishaw
,
I. Q.
,
Gorny
,
B.
,
Foroud
,
A.
, and
Kleim
,
J. A.
,
2003
, “
Long–Evans and Sprague–Dawley Rats Have Similar Skilled Reaching Success and Limb Representations in Motor Cortex but Different Movements: Some Cautionary Insights Into the Selection of Rat Strains for Neurobiological Motor Research
,”
Behav. Brain Res.
,
145
(
1
), pp.
221
232
.
16.
Sacrey
,
L.-A. R.
,
Alaverdashvili
,
M.
, and
Whishaw
,
I. Q.
,
2009
, “
Similar Hand Shaping in Reaching-for-Food (Skilled Reaching) in Rats and Humans Provides Evidence of Homology in Release, Collection, and Manipulation Movements
,”
Behav. Brain Res.
,
204
(
1
), pp.
153
161
.
17.
Aoki
,
S.
,
Sato
,
Y.
, and
Yanagihara
,
D.
,
2012
, “
Characteristics of Leading Forelimb Movements for Obstacle Avoidance During Locomotion in Rats
,”
Neurosci. Res.
,
74
(
2
), pp.
129
137
.
18.
Trudel
,
G.
,
Uhthoff
,
H. K.
,
Goudreau
,
L.
, and
Laneuville
,
O.
,
2014
, “
Quantitative Analysis of the Reversibility of Knee Flexion Contractures With Time: An Experimental Study Using the Rat Model
,”
BMC Musculoskeletal Disord.
,
15
(
1
), p.
338
.
19.
Abdel
,
M. P.
,
Morrey
,
M. E.
,
Grill
,
D. E.
,
Kolbert
,
C. P.
,
An
,
K.-N.
,
Steinmann
,
S. P.
,
Sanchez-Sotelo
,
J.
, and
Morrey
,
B. F.
,
2012
, “
Effects of Joint Contracture on the Contralateral Unoperated Limb in a Rabbit Knee Contracture Model: A Biomechanical and Genetic Study
,”
J. Orthop. Res.
,
30
(
10
), pp.
1581
1585
.
20.
Abdel
,
M. P.
,
Morrey
,
M. E.
,
Barlow
,
J. D.
,
Kreofsky
,
C. R.
,
An
,
K.-N.
,
Steinmann
,
S. P.
,
Morrey
,
B. F.
, and
Sanchez-Sotelo
,
J.
,
2012
, “
Myofibroblast Cells Are Preferentially Expressed Early in a Rabbit Model of Joint Contracture
,”
J. Orthop. Res.
,
30
(
5
), pp.
713
719
.
21.
Bryce
,
C. D.
, and
Armstrong
,
A. D.
,
2008
, “
Anatomy and Biomechanics of the Elbow
,”
Orthop. Clin. North Am.
,
39
(
2
), pp.
141
154
.
22.
Ling
,
S. K. K.
,
Lui
,
T. H.
,
Faan
,
Y. S.
,
Lui
,
P. W. Y.
, and
Ngai
,
W. K.
,
2014
, “
Post-Traumatic Elbow Rotational Stiffness
,”
Shoulder Elbow
,
6
(
2
), pp.
119
123
.
23.
Evans
,
E. B.
,
Eggers
,
G. W. N.
,
Butler
,
J. K.
, and
Blumel
,
J.
,
1960
, “
Experimental Immobilization and Remobilization of Rat Knee Joints
,”
J. Bone Jt. Surg. Am.
,
42
(
5
), pp.
737
758
.
You do not currently have access to this content.