The spinal facet capsular ligament (FCL) is primarily comprised of heterogeneous arrangements of collagen fibers. This complex fibrous structure and its evolution under loading play a critical role in determining the mechanical behavior of the FCL. A lack of analytical tools to characterize the spatial anisotropy and heterogeneity of the FCL's microstructure has limited the current understanding of its structure–function relationships. Here, the collagen organization was characterized using spatial correlation analysis of the FCL's optically obtained fiber orientation field. FCLs from the cervical and lumbar spinal regions were characterized in terms of their structure, as was the reorganization of collagen in stretched cervical FCLs. Higher degrees of intra- and intersample heterogeneity were found in cervical FCLs than in lumbar specimens. In the cervical FCLs, heterogeneity was manifested in the form of curvy patterns formed by collections of collagen fibers or fiber bundles. Tensile stretch, a common injury mechanism for the cervical FCL, significantly increased the spatial correlation length in the stretch direction, indicating an elongation of the observed structural features. Finally, an affine estimation for the change of correlation length under loading was performed which gave predictions very similar to the actual values. These findings provide structural insights for multiscale mechanical analyses of the FCLs from various spinal regions and also suggest methods for quantitative characterization of complex tissue patterns.

References

References
1.
Jaumard
,
N. V.
,
Welch
,
W. C.
, and
Winkelstein
,
B. A.
,
2011
, “
Spinal Facet Joint Biomechanics and Mechanotransduction in Normal, Injury and Degenerative Conditions
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071010
.
2.
Cavanaugh
,
J. M.
,
Lu
,
Y.
,
Chen
,
C.
, and
Kallakuri
,
S.
,
2006
, “
Pain Generation in Lumbar and Cervical Facet Joints
,”
J. Bone Jt. Surg. Am.
,
88
(
Suppl. 2
), pp.
63
67
.
3.
Winkelstein
,
B. A.
,
Nightingale
,
R. W.
,
Richardson
,
W. J.
, and
Myers
,
B. S.
,
2000
, “
The Cervical Facet Capsule and Its Role in Whiplash Injury: A Biomechanical Investigation
,”
Spine
,
25
(
10
), pp.
1238
1246
.
4.
Kallakuri
,
S.
,
Li
,
Y.
,
Chen
,
C.
, and
Cavanaugh
,
J. M.
,
2012
, “
Innervation of Cervical Ventral Facet Joint Capsule: Histological Evidence
,”
World J. Orthop.
,
3
(
2
), pp.
10
14
.
5.
Lord
,
S. M.
,
Barnsley
,
L.
,
Wallis
,
B. J.
, and
Bogduk
,
N.
,
1996
, “
Chronic Cervical Zygapophysial Joint Pain After Whiplash. A Placebo-Controlled Prevalence Study
,”
Spine
,
21
(
15
), pp.
1737
1744
; discussion 1744–1745.
6.
Yamashita
,
T.
,
Minaki
,
Y.
,
Ozaktay
,
A. C.
,
Cavanaugh
,
J. M.
, and
King
,
A. I.
,
1996
, “
A Morphological Study of the Fibrous Capsule of the Human Lumbar Facet Joint
,”
Spine
,
21
(
5
), pp.
538
543
.
7.
Yahia
,
L. H.
, and
Garzon
,
S.
,
1993
, “
Structure on the Capsular Ligaments of the Facet Joints
,”
Ann. Anat.
,
175
(
2
), pp.
185
188
.
8.
Panjabi
,
M. M.
,
Cholewicki
,
J.
,
Nibu
,
K.
,
Grauer
,
J.
, and
Vahldiek
,
M.
,
1998
, “
Capsular Ligament Stretches During In Vitro Whiplash Simulations
,”
J. Spinal Disord.
,
11
(
3
), pp.
227
232
.
9.
Cohen
,
S. P.
, and
Raja
,
S. N.
,
2007
, “
Pathogenesis, Diagnosis, and Treatment of Lumbar Zygapophysial (Facet) Joint Pain
,”
J. Am. Soc. Anesthesiol.
,
106
(
3
), pp.
591
614
.
10.
Gallagher
,
S.
, and
Marras
,
W. S.
,
2012
, “
Tolerance of the Lumbar Spine to Shear: A Review and Recommended Exposure Limits
,”
Clin. Biomech.
,
27
(
10
), pp.
973
978
.
11.
Siegmund
,
G. P.
,
Myers
,
B. S.
,
Davis
,
M. B.
,
Bohnet
,
H. F.
, and
Winkelstein
,
B. A.
,
2001
, “
Mechanical Evidence of Cervical Facet Capsule Injury During Whiplash: A Cadaveric Study Using Combined Shear, Compression, and Extension Loading
,”
Spine
,
26
(
19
), pp.
2095
2101
.
12.
Shah
,
A.
,
2014
, “
Morphometric Analysis of the Cervical Facets and the Feasibility, Safety, and Effectiveness of Goel Inter-Facet Spacer Distraction Technique
,”
J. Craniovertebral Junction Spine
,
5
(
1
), pp.
9
14
.
13.
Pal
,
G. P.
,
Routal
,
R. V.
, and
Saggu
,
S. K.
,
2001
, “
The Orientation of the Articular Facets of the Zygapophyseal Joints at the Cervical and Upper Thoracic Region
,”
J. Anat.
,
198
(
4
), pp.
431
441
.
14.
Panjabi
,
M. M.
,
Oxland
,
T.
,
Takata
,
K.
,
Goel
,
V.
,
Duranceau
,
J.
, and
Krag
,
M.
,
1993
, “
Articular Facets of the Human Spine. Quantitative Three-Dimensional Anatomy
,”
Spine
,
18
(
10
), pp.
1298
1310
.
15.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
,
2011
, “
Detection of Altered Collagen Fiber Alignment in the Cervical Facet Capsule After Whiplash-Like Joint Retraction
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2163
2173
.
16.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
,
2009
, “
Vector Correlation Technique for Pixel-Wise Detection of Collagen Fiber Realignment During Injurious Tensile Loading
,”
J. Biomed. Opt.
,
14
(
5
), p.
054010
.
17.
Quinn
,
K. P.
,
Lee
,
K. E.
,
Ahaghotu
,
C. C.
, and
Winkelstein
,
B. A.
,
2007
, “
Structural Changes in the Cervical Facet Capsular Ligament: Potential Contributions to Pain Following Subfailure Loading
,”
Stapp Car Crash J.
,
51
, pp.
169
187
.
18.
Zhang
,
S.
,
Bassett
,
D. S.
, and
Winkelstein
,
B. A.
,
2016
, “
Stretch-Induced Network Reconfiguration of Collagen Fibres in the Human Facet Capsular Ligament
,”
J. R. Soc. Interface
,
13
(
114
), p.
20150883
.
19.
Zarei
,
V.
,
Liu
,
C. J.
,
Claeson
,
A. A.
,
Akkin
,
T.
, and
Barocas
,
V. H.
,
2016
, “
Image-Based Multiscale Mechanical Modeling Shows the Importance of Structural Heterogeneity in the Human Lumbar Facet Capsular Ligament
,”
Biomech. Model. Mechanobiol.
(in review).
20.
Little
,
J. S.
, and
Khalsa
,
P. S.
,
2005
, “
Material Properties of the Human Lumbar Facet Joint Capsule
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
15
24
.
21.
Chen
,
C.
,
Lu
,
Y.
,
Kallakuri
,
S.
,
Patwardhan
,
A.
, and
Cavanaugh
,
J. M.
,
2006
, “
Distribution of A-Delta and C-Fiber Receptors in the Cervical Facet Joint Capsule and Their Response to Stretch
,”
J. Bone Jt. Surg. Am.
,
88
(
8
), pp.
1807
1816
.
22.
Lu
,
Y.
,
Chen
,
C.
,
Kallakuri
,
S.
,
Patwardhan
,
A.
, and
Cavanaugh
,
J. M.
,
2005
, “
Neurophysiological and Biomechanical Characterization of Goat Cervical Facet Joint Capsules
,”
J. Orthop. Res.
,
23
(
4
), pp.
779
787
.
23.
Winkelstein
,
B. A.
,
2011
, “
How Can Animal Models Inform on the Transition to Chronic Symptoms in Whiplash?
,”
Spine
,
36
(
25S
), pp.
S218
S225
.
24.
Zhang
,
S.
,
Cao
,
X.
,
Stablow
,
A. M.
,
Shenoy
, V
. B.
, and
Winkelstein
,
B. A.
,
2016
, “
Tissue Strain Reorganizes Collagen With a Switchlike Response That Regulates Neuronal Extracellular Signal-Regulated Kinase Phosphorylation In Vitro: Implications for Ligamentous Injury and Mechanotransduction
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021013
.
25.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
,
2008
, “
Altered Collagen Fiber Kinematics Define the Onset of Localized Ligament Damage During Loading
,”
J. Appl. Physiol.
,
105
(
6
), pp.
1881
1888
.
26.
Dong
,
L.
,
Quindlen
,
J. C.
,
Lipschutz
,
D. E.
, and
Winkelstein
,
B. A.
,
2012
, “
Whiplash-Like Facet Joint Loading Initiates Glutamatergic Responses in the DRG and Spinal Cord Associated With Behavioral Hypersensitivity
,”
Brain Res.
,
1461
, pp.
51
63
.
27.
Tower
,
T. T.
,
Neidert
,
M. R.
, and
Tranquillo
,
R. T.
,
2002
, “
Fiber Alignment Imaging During Mechanical Testing of Soft Tissues
,”
Ann. Biomed. Eng.
,
30
(
10
), pp.
1221
1233
.
28.
Claeson
,
A. A.
,
Yeh
,
Y.-J.
,
Black
,
A. J.
,
Akkin
,
T.
, and
Barocas
, V
. H.
,
2015
, “
Marker-Free Tracking of Facet Capsule Motion Using Polarization-Sensitive Optical Coherence Tomography
,”
Ann. Biomed. Eng.
,
43
(
12
), pp.
2953
2966
.
29.
Bracewell
,
R. N.
,
1987
,
The Fourier Transform and Its Applications
,
McGraw-Hill
,
New York
, Chap. 3.
30.
Jones
,
C. A. R.
,
Liang
,
L.
,
Lin
,
D.
,
Jiao
,
Y.
, and
Sun
,
B.
,
2014
, “
The Spatial-Temporal Characteristics of Type I Collagen-Based Extracellular Matrix
,”
Soft Matter
,
10
(
44
), pp.
8855
8863
.
31.
Jiao
,
Y.
,
Stillinger
,
F. H.
, and
Torquato
,
S.
,
2007
, “
Modeling Heterogeneous Materials Via Two-Point Correlation Functions: Basic Principles
,”
Phys. Rev. E
,
76
(
3
), p.
031110
.
32.
Chandran
,
P. L.
,
2005
, “
Affine Versus Non-Affine Fibril Kinematics in Collagen Networks: Theoretical Studies of Network Behavior
,”
ASME J. Biomech. Eng.
,
128
(
2
), pp.
259
270
.
33.
Basu
,
A.
,
Wen
,
Q.
,
Mao
,
X.
,
Lubensky
,
T. C.
,
Janmey
,
P. A.
, and
Yodh
,
A. G.
,
2011
, “
Nonaffine Displacements in Flexible Polymer Networks
,”
Macromolecules
,
44
(
6
), pp.
1671
1679
.
34.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
,
2010
, “
Tensile Properties and Fiber Alignment of Human Supraspinatus Tendon in the Transverse Direction Demonstrate Inhomogeneity, Nonlinearity, and Regional Isotropy
,”
J. Biomech.
,
43
(
4
), pp.
727
732
.
35.
Lake
,
S. P.
, and
Barocas
,
V. H.
,
2012
, “
Mechanics and Kinematics of Soft Tissue Under Indentation Are Determined by the Degree of Initial Collagen Fiber Alignment
,”
J. Mech. Behav. Biomed. Mater.
,
13
, pp.
25
35
.
36.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
,
2009
, “
Effect of Fiber Distribution and Realignment on the Nonlinear and Inhomogeneous Mechanical Properties of Human Supraspinatus Tendon Under Longitudinal Tensile Loading
,”
J. Orthop. Res.
,
27
(
12
), pp.
1596
1602
.
37.
Claeson
,
A. A.
, and
Barocas
,
V. H.
,
2017
, “
Planar Biaxial Extension of the Lumbar Facet Capsular Ligament Reveals Significant In-Plane Shear Forces
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
127
136
.
38.
Siegmund
,
G. P.
,
Myers
,
B. S.
,
Davis
,
M. B.
,
Bohnet
,
H. F.
, and
Winkelstein
,
B. A.
,
2000
, “
Human Cervical Motion Segment Flexibility and Facet Capsular Ligament Strain Under Combined Posterior Shear, Extension and Axial Compression
,”
Stapp Car Crash J.
,
44
, pp.
159
170
.
39.
Ianuzzi
,
A.
,
Little
,
J. S.
,
Chiu
,
J. B.
,
Baitner
,
A.
,
Kawchuk
,
G.
, and
Khalsa
,
P. S.
,
2004
, “
Human Lumbar Facet Joint Capsule Strains: I. During Physiological Motions
,”
Spine J.
,
4
(
2
), pp.
141
152
.
40.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
,
2000
, “
Geometric and Mechanical Properties of Human Cervical Spine Ligaments
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
623
629
.
41.
Ianuzzi
,
A.
, and
Khalsa
,
P. S.
,
2005
, “
Comparison of Human Lumbar Facet Joint Capsule Strains During Simulated High-Velocity, Low-Amplitude Spinal Manipulation Versus Physiological Motions
,”
Spine J.
,
5
(
3
), pp.
277
290
.
42.
Little
,
J. S.
,
Ianuzzi
,
A.
,
Chiu
,
J. B.
,
Baitner
,
A.
, and
Khalsa
,
P. S.
,
2004
, “
Human Lumbar Facet Joint Capsule Strains: II. Alteration of Strains Subsequent to Anterior Interbody Fixation
,”
Spine J.
,
4
(
2
), pp.
153
162
.
43.
Winkelstein
,
B. A.
,
McLendon
,
R. E.
,
Barbir
,
A.
, and
Myers
,
B. S.
,
2001
, “
An Anatomical Investigation of the Human Cervical Facet Capsule, Quantifying Muscle Insertion Area
,”
J. Anat.
,
198
(
4
), pp.
455
461
.
44.
Blair
,
S. C.
,
Berge
,
P. A.
, and
Berryman
,
J. G.
,
1996
, “
Using Two-Point Correlation Functions to Characterize Microgeometry and Estimate Permeabilities of Sandstones and Porous Glass
,”
J. Geophys. Res. Solid Earth
,
101
(
B9
), pp.
20359
20375
.
You do not currently have access to this content.