The Fontan procedure is a common palliative intervention for sufferers of single ventricle congenital heart defects that results in an anastomosis of the venous return to the pulmonary arteries called the total cavopulmonary connection (TCPC). Local TCPC and global Fontan circulation hemodynamics are studied with in vitro circulatory models because of hemodynamic ties to Fontan patient long-term complications. The majority of in vitro studies, to date, employ a rigid TCPC model. Recently, a few studies have incorporated flexible TCPC models, but provide no justification for the model material properties. The method set forth in this study successfully utilizes patient-specific flow and pressure data from phase contrast magnetic resonance images (PCMRI) (n = 1) and retrospective pulse-pressure data from an age-matched patient cohort (n = 10) to verify the compliance of an in vitro TCPC model. These data were analyzed, and the target compliance was determined as 1.36 ± 0.78 mL/mm Hg. A method of in vitro compliance testing and computational simulations was employed to determine the in vitro flexible TCPC model material properties and then use those material properties to estimate the wall thickness necessary to match the patient-specific target compliance. The resulting in vitro TCPC model compliance was 1.37 ± 0.1 mL/mm Hg—a value within 1% of the patient-specific compliance. The presented method is useful to verify in vitro model accuracy of patient-specific TCPC compliance and thus improve patient-specific hemodynamic modeling.

References

References
1.
Fontan
,
F.
, and
Baudet
,
E.
,
1971
, “
Surgical Repair of Tricuspid Atresia
,”
Thorax
,
26
(
3
), pp.
240
248
.
2.
van den Bosch
,
A. E.
,
Roos-Hesselink
,
J. W.
,
Van Domburg
,
R.
,
Bogers
,
A. J.
,
Simoons
,
M. L.
, and
Meijboom
,
F. J.
,
2004
, “
Long-Term Outcome and Quality of Life in Adult Patients After the Fontan Operation
,”
Am. J. Cardiol.
,
93
(
9
), pp.
1141
1145
.
3.
Mondésert
,
B.
,
Marcotte
,
F.
,
Mongeon
,
F.-P. P.
,
Dore
,
A.
,
Mercier
,
L.-A. A.
,
Ibrahim
,
R.
,
Asgar
,
A.
,
Miro
,
J.
,
Poirier
,
N.
, and
Khairy
,
P.
,
2013
, “
Fontan Circulation: Success or Failure?
,”
Can. J. Cardiol.
,
29
(
7
), pp.
811
820
.
4.
Hebson
,
C. L.
,
McCabe
,
N. M.
,
Elder
,
R. W.
,
Mahle
,
W. T.
,
McConnell
,
M.
,
Kogon
,
B. E.
,
Veledar
,
E.
,
Jokhadar
,
M.
,
Vincent
,
R. N.
,
Sahu
,
A.
, and
Book
,
W. M.
,
2013
, “
Hemodynamic Phenotype of the Failing Fontan in an Adult Population
,”
Am. J. Cardiol.
,
112
(
12
), pp.
1943
1947
.
5.
Goldberg
,
D. J.
, and
Paridon
,
S. M.
,
2014
, “
Fontan Circulation: The Search for Targeted Therapy
,”
Circulation
,
130
(
23
), pp.
1999
2001
.
6.
Prêtre
,
R.
,
Häussler
,
A.
,
Bettex
,
D.
, and
Genoni
,
M.
,
2008
, “
Right-Sided Univentricular Cardiac Assistance in a Failing Fontan Circulation
,”
Ann. Thorac. Surg.
,
86
(
3
), pp.
1018
1020
.
7.
Watrous
,
R. L.
, and
Chin
,
A. J.
,
2014
, “
Model-Based Comparison of the Normal and Fontan Circulatory Systems—Part I: Development of a General Purpose, Interactive Cardiovascular Model
,”
World J. Pediatr. Congenit. Heart Surg.
,
5
(
3
), pp.
372
384
.
8.
Chin
,
A. J.
, and
Watrous
,
R. L.
,
2015
, “
Model-Based Comparison of the Normal and Fontan Circulatory Systems—Part II: Major Differences in Performance Characteristics
,”
World J. Pediatr. Congenit. Heart Surg.
,
6
(
3
), pp.
360
373
.
9.
Haggerty
,
C. M.
,
Kanter
,
K. R.
,
Restrepo
,
M.
,
De Zélicourt
,
D. A.
,
Parks
,
W. J.
,
Rossignac
,
J.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2013
, “
Simulating Hemodynamics of the Fontan Y-Graft Based on Patient-Specific In Vivo Connections
,”
J. Thorac. Cardiovasc. Surg.
,
145
(
3
), pp.
663
670
.
10.
Kim
,
Y. H.
,
Walker
,
P. G.
,
Fontaine
,
A. A.
,
Panchal
,
S.
,
Ensley
,
A. E.
,
Oshinski
,
J.
,
Sharma
,
S.
,
Ha
,
B.
,
Lucas
,
C. L.
, and
Yoganathan
,
A. P.
,
1995
, “
Hemodynamics of the Fontan Connection: An In-Vitro Study
,”
ASME J. Biomech. Eng.
,
117
(
4
), pp.
423
428
.
11.
Kerlo
,
A.-E. M.
,
Delorme
,
Y. T.
,
Xu
,
D.
,
Frankel
,
S. H.
,
Giridharan
,
G. A.
,
Rodefeld
,
M. D.
, and
Chen
,
J.
,
2013
, “
Experimental Characterization of Powered Fontan Hemodynamics in an Idealized Total Cavopulmonary Connection Model
,”
Exp. Fluids
,
54
(
8
), p.
1581
.
12.
Haggerty
,
C. M.
,
Restrepo
,
M.
,
Tang
,
E.
,
De Zélicourt
,
D. A.
,
Sundareswaran
,
K. S.
,
Mirabella
,
L.
,
Bethel
,
J.
,
Whitehead
,
K. K.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2014
, “
Fontan Hemodynamics From 100 Patient-Specific Cardiac Magnetic Resonance Studies: A Computational Fluid Dynamics Analysis
,”
J. Thorac. Cardiovasc. Surg.
,
148
(
4
), pp.
1481
1489
.
13.
Khiabani
,
R. H.
,
Whitehead
,
K. K.
,
Han
,
D.
,
Restrepo
,
M.
,
Tang
,
E.
,
Bethel
,
J.
,
Paridon
,
S. M.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2014
, “
Exercise Capacity in Single-Ventricle Patients After Fontan Correlates With Haemodynamic Energy Loss in TCPC
,”
Heart
,
101
(
2
), pp.
139
143
.
14.
Vukicevic
,
M.
,
Conover
,
T. A.
,
Zhou
,
J.
,
Hsia
,
T.-Y.
, and
Figliola
,
R. S.
,
2012
, “
In Vitro Study of Pulmonary Vascular Resistance in Fontan Circulation With Respiration Effects
,”
ASME
Paper No. SBC2012-80888.
15.
Vukicevic
,
M.
,
Chiulli
,
J. A.
,
Conover
,
T. A.
,
Pennati
,
G.
,
Hsia
,
T.-Y. Y.
, and
Figliola
,
R. S.
,
2013
, “
Mock Circulatory System of the Fontan Circulation to Study Respiration Effects on Venous Flow Behavior
,”
ASAIO J.
,
59
(
3
), pp.
253
260
.
16.
Figliola
,
R. S.
,
Giardini
,
A.
,
Conover
,
T. A.
,
Camp
,
T. A.
,
Biglino
,
G.
,
Chiulli
,
J. A.
, and
Hsia
,
T.-Y.
,
2010
, “
In Vitro Simulation and Validation of the Circulation With Congenital Heart Defects
,”
Prog. Pediatr. Cardiol.
,
30
(
1–2
), pp.
71
80
.
17.
Walker
,
P. G.
,
Howe
,
T. T.
,
Davies
,
R. L.
,
Fisher
,
J.
, and
Watterson
,
K. G.
,
2000
, “
Distribution of Hepatic Venous Blood in the Total Cavo-Pulmonary Connection: An In Vitro Study
,”
Eur. J. Cardiothorac. Surg.
,
17
(
6
), pp.
658
665
.
18.
Gerdes
,
A.
,
Benthin
,
U.
, and
Sievers
,
H. H.
,
2002
, “
Influence of Arteriotomy Shape on Power Losses Across In Vitro Cavopulmonary Connections
,”
J. Cardiovasc. Surg.
,
43
(
6
), pp.
787
791
.
19.
Ensley
,
A. E.
,
Lynch
,
P.
,
Chatzimavroudis
,
G. P.
,
Lucas
,
C.
,
Sharma
,
S.
, and
Yoganathan
,
A. P.
,
1999
, “
Toward Designing the Optimal Total Cavopulmonary Connection: An In Vitro Study
,”
Ann. Thorac. Surg.
,
68
(
4
), pp.
1384
1390
.
20.
Liu
,
J.
,
Qian
,
Y.
,
Sun
,
Q.
,
Liu
,
J.
, and
Umezu
,
M.
,
2013
, “
Use of Computational Fluid Dynamics to Estimate Hemodynamic Effects of Respiration on Hypoplastic Left Heart Syndrome Surgery: Total Cavopulmonary Connection Treatments
,”
Sci. World J.
,
2013
, p.
131597
.
21.
Bossers
,
S. S. M.
,
Cibis
,
M.
,
Gijsen
,
F. J.
,
Schokking
,
M.
,
Strengers
,
J. L. M.
,
Verhaart
,
R. F.
,
Moelker
,
A.
,
Wentzel
,
J. J.
, and
Helbing
,
W. A.
,
2014
, “
Computational Fluid Dynamics in Fontan Patients to Evaluate Power Loss During Simulated Exercise
,”
Heart
,
100
(
9
), pp.
696
701
.
22.
Van De Bruaene
,
A.
,
Claessen
,
G.
,
La Gerche
,
A.
,
Kung
,
E.
,
Marsden
,
A.
,
De Meester
,
P.
,
Devroe
,
S.
,
Bogaert
,
J.
,
Claus
,
P.
,
Heidbuchel
,
H.
,
Budts
,
W.
, and
Gewillig
,
M.
,
2015
, “
Effect of Respiration on Cardiac Filling at Rest and During Exercise in Fontan Patients: A Clinical and Computational Modeling Study
,”
IJC Heart Vasculature
,
9
, pp.
100
108
.
23.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Benson
,
D. J.
,
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2009
, “
Computational Fluid–Structure Interaction: Methods and Application to a Total Cavopulmonary Connection
,”
Comput. Mech.
,
45
(
1
), pp.
77
89
.
24.
Masters
,
J. C.
,
Ketner
,
M.
,
Bleiweis
,
M. S.
,
Mill
,
M.
,
Yoganathan
,
A.
, and
Lucas
,
C. L.
,
2004
, “
The Effect of Incorporating Vessel Compliance in a Computational Model of Blood Flow in a Total Cavopulmonary Connection (TCPC) With Caval Centerline Offset
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
709
713
.
25.
Slesnick
,
T. C.
, and
Yoganathan
,
A. P.
,
2014
, “
Computational Modeling of Fontan Physiology: At the Crossroads of Pediatric Cardiology and Biomedical Engineering
,”
Int. J. Cardiovasc. Imaging
,
30
(
6
), pp.
1073
1084
.
26.
Kung
,
E.
,
Perry
,
J. C.
,
Davis
,
C.
,
Migliavacca
,
F.
,
Pennati
,
G.
,
Giardini
,
A.
,
Hsia
,
T.-Y.
, and
Marsden
,
A. L.
,
2014
, “
Computational Modeling of Pathophysiologic Responses to Exercise in Fontan Patients
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1335
1347
.
27.
Wei
,
Z. A.
,
Trusty
,
P. M.
,
Tree
,
M.
,
Haggerty
,
C. M.
,
Tang
,
E.
,
Fogel
,
M.
, and
Yoganathan
,
A. P.
,
2016
, “
Can Time-Averaged Flow Boundary Conditions Be Used to Meet the Clinical Timeline for Fontan Surgical Planning?
,”
J. Biomech.
,
50
, pp.
172
179
.
28.
Vukicevic
,
M.
,
Conover
,
T. A.
,
Jaeggli
,
M.
,
Zhou
,
J.
,
Pennati
,
G.
,
Hsia
,
T.-Y.
, and
Figliola
,
R. S.
,
2014
, “
Control of Respiration-Driven Retrograde Flow in the Subdiaphragmatic Venous Return of the Fontan Circulation
,”
ASAIO J.
,
60
(
4
), pp.
21
23
.
29.
Santhanakrishnan
,
A.
,
Maher
,
K. O.
,
Tang
,
E.
,
Khiabani
,
R. H.
,
Johnson
,
J.
, and
Yoganathan
,
A. P.
,
2013
, “
Hemodynamic Effects of Implanting a Unidirectional Valve in the Inferior Vena Cava of the Fontan Circulation Pathway: An In Vitro Investigation
,”
Am. J. Physiol.—Heart Circ. Physiol.
,
305
(
10
), pp.
H1538
H1547
.
30.
Long
,
C. C.
,
Hsu
,
M.-C. C.
,
Bazilevs
,
Y.
,
Feinstein
,
J. A.
, and
Marsden
,
A. L.
,
2012
, “
Fluid—Structure Interaction Simulations of the Fontan Procedure Using Variable Wall Properties
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
5
), pp.
513
527
.
31.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig
,
G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
Neuroimage
,
31
(
3
), pp.
1116
1128
.
32.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2011
,
Theory and Design for Mechanical Measurements
,
Wiley
, Hoboken, NJ.
33.
Papaharilaou
,
Y.
,
Doorly
,
D. J.
, and
Sherwin
,
S. J.
,
2001
, “
Assessing the Accuracy of Two-Dimensional Phase-Contrast MRI Measurements of Complex Unsteady Flows
,”
J. Magn. Reson. Imaging
,
14
(
6
), pp.
714
723
.
34.
Biglino
,
G.
,
Verschueren
,
P.
,
Zegels
,
R.
,
Taylor
,
A. M.
, and
Schievano
,
S.
,
2013
, “
Rapid Prototyping Compliant Arterial Phantoms for In-Vitro Studies and Device Testing
,”
J. Cardiovasc. Magn. Reson.
,
15
(
1
), p.
2
.
You do not currently have access to this content.