A finite element model was used to compare the biomechanical properties of a novel anterior transpedicular screw artificial vertebral body system (AVBS) with a conventional anterior screw plate system (ASPS) for fixation in the lower cervical spine. A model of the intact cervical spine (C3–C7) was established. AVBS or ASPS constructs were implanted between C4 and C6. The models were loaded in three-dimensional (3D) motion. The Von Mises stress distribution in the internal fixators was evaluated, as well as the range of motion (ROM) and facet joint force. The models were generated and analyzed by mimics, geomagic studio, and ansys software. The intact model of the lower cervical spine consisted of 286,382 elements. The model was validated against previously reported cadaveric experimental data. In the ASPS model, stress was concentrated at the connection between the screw and plate and the connection between the titanium mesh and adjacent vertebral body. In the AVBS model, stress was evenly distributed. Compared to the intact cervical spine model, the ROM of the whole specimen after fixation with both constructs is decreased by approximately 3 deg. ROM of adjacent segments is increased by approximately 5 deg. Facet joint force of the ASPS and AVBS models was higher than those of the intact cervical spine model, especially in extension and lateral bending. AVBS fixation represents a novel reconstruction approach for the lower cervical spine. AVBS provides better stability and lower risk for internal fixator failure compared with traditional ASPS fixation.

References

References
1.
Boockvar
,
J. A.
,
Philips
,
M. F.
,
Telfeian
,
A. E.
,
O'Rourke
,
D. M.
, and
Marcotte
,
P. J.
,
2001
, “
Results and Risk Factors for Anterior Cervicothoracic Junction Surgery
,”
J. Neurosurg.
,
94
(1), pp.
12
17
.
2.
Di Angelo
,
D. J.
,
Foley
,
K. T.
,
Morrow
,
B. R.
,
Schwab
,
J. S.
,
Song
,
J.
,
German
,
J. W.
, and Blair, E.,
2001
, “
In Vitro Biomechanics of Cervical Disc Arthroplasty With the ProDisc-C Total Disc Implant
,”
Neurosurg. Focus
,
17
(3), p.
E7
.
3.
Nabhan
,
A.
,
Ahlhelm
,
F.
,
Pitzen
,
T.
,
Steudel
,
W. I.
,
Jung
,
J.
,
Shariat
,
K.
, Steimer, O., Bachelier, F., and Pape, D.,
2007
, “
Disc Replacement Using Pro-Disc C Versus Fusion: A Prospective Randomised and Controlled Radiographic and Clinical Study
,”
Eur. Spine J.
,
16
(
3
), pp.
423
430
.
4.
Porchet
,
F.
, and
Metcalf
,
N. H.
,
2004
, “
Clinical Outcomes With the Prestige II Cervical Disc: Preliminary Results From a Prospective Randomized Clinical Trial
,”
Neurosurg. Focus
,
17
(3), p.
E6
.
5.
Henriques
,
T.
,
Olerud
,
C.
,
Bergman
,
A.
, and
Jonsson
,
H. J.
,
2004
, “
Distractive Flexion Injuries of the Subaxial Cervical Spine Treated With Anterior Plate Alone
,”
J. Spinal Disord. Tech.
,
17
(
1
), pp.
1
7
.
6.
Epstein
,
N. E.
,
2001
, “
Reoperation Rates for Acute Graft Extrusion and Pseudarthrosis After One-Level Anterior Corpectomy and Fusion With and Without Plate Instrumentation: Etiology and Corrective Management
,”
Surg. Neurol.
,
56
(
2
), pp.
73
81
.
7.
Bozkus
,
H.
,
Ames
,
C. P.
,
Chamberlain
,
R. H.
,
Nottmeier
,
E. W.
,
Sonntag
,
V. K.
,
Papadopoulos
,
S. M.
, and Crawford, N. R.,
2005
, “
Biomechanical Analysis of Rigid Stabilization Techniques for Three-Column Injury in the Lower Cervical Spine
,”
Spine (Philadelphia Pa 1976)
,
30
(
8
), pp.
915
922
.
8.
Daubs
,
M. D.
,
2005
, “
Early Failures Following Cervical Corpectomy Reconstruction With Titanium Mesh Cages and Anterior Plating
,”
Spine (Philadelphia Pa 1976)
,
30
(
12
), pp.
1402
1406
.
9.
Sasso
,
R. C.
,
Ruggiero
,
R. J.
,
Reilly
,
T. M.
, and
Hall
,
P. V.
,
2003
, “
Early Reconstruction Failures After Multilevel Cervical Corpectomy
,”
Spine (Philadelphia Pa 1976)
,
28
(
2
), pp.
140
142
.
10.
Vaccaro
,
A. R.
,
Falatyn
,
S. P.
,
Scuderi
,
G. J.
,
Eismont
,
F. J.
,
McGuire
,
R. A.
,
Singh
,
K.
, and Garfin, S. R.,
1998
, “
Early Failure of Long Segment Anterior Cervical Plate Fixation
,”
J. Spinal Disord.
,
11
(5), pp.
410
415
.
11.
Masaki
,
Y.
,
Yamazaki
,
M.
,
Okawa
,
A.
,
Aramomi
,
M.
,
Hashimoto
,
M.
,
Koda
,
M.
, Mochizuki, M., and Moriya, H.,
2007
, “
An Analysis of Factors Causing Poor Surgical Outcome in Patients With Cervical Myelopathy Due to Ossification of the Posterior Longitudinal Ligament: Anterior Decompression With Spinal Fusion Versus Laminoplasty
,”
J. Spinal Disord. Tech.
,
20
(
1
), pp.
7
13
.
12.
Schmidt
,
R.
,
Wilke
,
H. J.
,
Claes
,
L.
,
Puhl
,
W.
, and
Richter
,
M.
,
2003
, “
Pedicle Screws Enhance Primary Stability in Multilevel Cervical Corpectomies: Biomechanical in vitro Comparison of Different Implants Including Constrained and Nonconstrained Posterior Instrumentations
,”
Spine (Philadelphia Pa 1976)
,
28
(
16
), pp.
1821
1828
.
13.
Ashkenazi
,
E.
,
Smorgick
,
Y.
,
Rand
,
N.
,
Millgram
,
M. A.
,
Mirovsky
,
Y.
, and
Floman
,
Y.
,
2005
, “
Anterior Decompression Combined With Corpectomies and Discectomies in the Management of Multilevel Cervical Myelopathy: A Hybrid Decompression and Fixation Technique
,”
J. Neurosurg. Spine
,
3
(
3
), pp.
205
209
.
14.
Brazenor
,
G. A.
,
2007
, “
Comparison of Multisegment Anterior Cervical Fixation Using Bone Strut Graft Versus a Titanium Rod and Buttress Prosthesis: Analysis of Outcome With Long-Term Follow-Up and Interview by Independent Physician
,”
Spine (Philadelphia Pa 1976)
,
32
(
1
), pp.
63
71
.
15.
Koller
,
H.
,
Hempfing
,
A.
,
Acosta
,
F.
,
Fox
,
M.
,
Scheiter
,
A.
,
Tauber
,
M.
, Holz, U., Resch, H., and Hitzl, W.,
2008
, “
Cervical Anterior Transpedicular Screw Fixation—Part I: Study on Morphological Feasibility, Indications, and Technical Prerequisites
,”
Eur. Spine J.
,
17
(
4
), pp.
523
528
.
16.
Chen
,
C.
,
Ruan
,
D.
,
Wu
,
C.
,
Wu
,
W.
,
Sun
,
P.
,
Zhang
,
Y.
, Wu, J., Lu, S., and Ouyang, J.,
2013
, “
CT Morphometric Analysis to Determine the Anatomical Basis for the Use of Transpedicular Screws During Reconstruction and Fixations of Anterior Cervical Vertebrae
,”
PLoS One
,
8
(
12
), p.
e81159
.
17.
Fu
,
M.
,
Lin
,
L.
,
Kong
,
X.
,
Zhao
,
W.
,
Tang
,
L.
,
Li
,
J.
, and Ouyang, J.,
2013
, “
Construction and Accuracy Assessment of Patient-Specific Biocompatible Drill Template for Cervical Anterior Transpedicular Screw (ATPS) Insertion: An In Vitro Study
,”
PLoS One
,
8
(
1
), p.
e53580
.
18.
Zhao
,
L. J.
,
Xu
,
R. M.
,
Jiang
,
W. Y.
,
Ma
,
W. H.
,
Xu
,
N. J.
, and
Hu
,
Y.
,
2011
, “
A New Technique for Anterior Cervical Pedicle Screw Implantation
,”
Orthop. Surg.
,
3
(
3
), pp.
193
198
.
19.
Yukawa
,
Y.
,
Kato
,
F.
,
Ito
,
K.
,
Nakashima
,
H.
, and
Machino
,
M.
,
2009
, “
Anterior Cervical Pedicle Screw and Plate Fixation Using Fluoroscope-Assisted Pedicle Axis View Imaging: A Preliminary Report of a New Cervical Reconstruction Technique
,”
Eur. Spine J.
,
18
(
6
), pp.
911
916
.
20.
Lau
,
D.
,
Song
,
Y.
,
Guan
,
Z.
,
La Marca
,
F.
, and
Park
,
P.
,
2013
, “
Radiological Outcomes of Static vs Expandable Titanium Cages After Corpectomy: A Retrospective Cohort Analysis of Subsidence
,”
Neurosurgery
,
72
(
4
), pp.
529
539
.
21.
Fice
,
J. B.
,
Cronin
,
D. S.
, and
Panzer
,
M. B.
,
2011
, “
Cervical Spine Model to Predict Capsular Ligament Response in Rear Impact
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2152
2162
.
22.
Fan
,
C. Y.
,
Hsu
,
C. C.
,
Chao
,
C. K.
,
Lin
,
S. C.
, and
Chao
,
K. H.
,
2010
, “
Biomechanical Comparisons of Different Posterior Instrumentation Constructs After Two-Level ALIF: A Finite Element Study
,”
Med. Eng. Phys.
,
32
(
2
), pp.
203
211
.
23.
Hussain
,
M.
,
Nassr
,
A.
,
Natarajan
,
R. N.
,
An
,
H. S.
, and
Andersson
,
G. B.
,
2012
, “
Corpectomy Versus Discectomy for the Treatment of Multilevel Cervical Spine Pathology: A Finite Element Model Analysis
,”
Spine J.
,
12
(
5
), pp.
401
408
.
24.
Mercer
,
S.
, and
Bogduk
,
N.
,
1999
, “
The Ligaments and Annulus Fibrosus of Human Adult Cervical Intervertebral Discs
,”
Spine (Philadelphia Pa 1976)
,
24
(
7
), pp.
619
628
.
25.
Lee
,
S. H.
,
Im
,
Y. J.
,
Kim
,
K. T.
,
Kim
,
Y. H.
,
Park
,
W. M.
, and
Kim
,
K.
,
2011
, “
Comparison of Cervical Spine Biomechanics After Fixed- and Mobile-Core Artificial Disc Replacement: A Finite Element Analysis
,”
Spine (Philadelphia Pa 1976)
,
36
(
9
), pp.
700
708
.
26.
Hussain
,
M.
,
Natarajan
,
R. N.
,
Fayyazi
,
A. H.
,
Braaksma
,
B. R.
,
Andersson
,
G. B.
, and
An
,
H. S.
,
2009
, “
Screw Angulation Affects Bone-Screw Stresses and Bone Graft Load Sharing in Anterior Cervical Corpectomy Fusion With a Rigid Screw-Plate Construct: A Finite Element Model Study
,”
Spine J.
,
9
(
12
), pp.
1016
1023
.
27.
Tchako
,
A.
, and
Sadegh
,
A. M.
,
2009
, “
Stress Changes in Intervertebral Discs of the Cervical Spine Due to Partial Discectomies and Fusion
,”
ASME J. Biomech. Eng.
,
131
(
5
), p.
51013
.
28.
Panjabi
,
M. M.
,
Crisco
,
J. J.
,
Vasavada
,
A.
,
Oda
,
T.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and Shin, E.,
2001
, “
Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
Spine (Philadelphia Pa 1976)
,
26
(
24
), pp.
2692
2700
.
29.
Kallemeyn
,
N.
,
Gandhi
,
A.
,
Kode
,
S.
,
Shivanna
,
K.
,
Smucker
,
J.
, and
Grosland
,
N.
,
2010
, “
Validation of a C2–C7 Cervical Spine Finite Element Model Using Specimen-Specific Flexibility Data
,”
Med. Eng. Phys.
,
32
(
5
), pp.
482
489
.
30.
Holmes
,
A.
,
Wang
,
C.
,
Han
,
Z. H.
, and
Dang
,
G. T.
,
1994
, “
The Range and Nature of Flexion-Extension Motion in the Cervical Spine
,”
Spine
,
19
(22), pp.
2505
2510
.
31.
Panjabi
,
M. M.
,
1992
, “
The Stabilizing System of the Spine—Part II: Neutral Zone and Instability Hypothesis
,”
J. Spinal Disord. Tech.
,
5
(
4
), pp.
390
397
.
32.
Moroney
,
S. P.
,
Schultz
,
A. B.
,
Miller
,
J. A.
, and
Andersson
,
G. B.
,
1988
, “
Load-Displacement Properties of Lower Cervical Spine Motion Segments
,”
J. Biomech.
,
21
(
9
), pp.
769
779
.
33.
Panjabi
,
M. M.
,
Summers
,
D. J.
,
Pelker
,
R. R.
,
Videman
,
T.
,
Friedlaender
,
G. E.
, and
Southwick
,
W. O.
,
1986
, “
Three-Dimensional Load-Displacement Curves Due to Forces on the Cervical Spine
,”
J. Orthop. Res.
,
4
(
2
), pp.
152
161
.
34.
Penning
,
L.
,
1978
, “
Normal Movements of the Cervical Spine
,”
Am. J. Roentgenol.
,
130
(
2
), pp.
317
326
.
35.
Nightingale
,
R. W.
,
Winkelstein
,
B. A.
,
Knaub
,
K. E.
,
Richardson
,
W. J.
,
Luck
,
J. F.
, and
Myers
,
B. S.
,
2002
, “
Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension
,”
J. Biomech.
,
35
(6), pp.
725
732
.
36.
Burkhart
,
T. A.
,
Andrews
,
D. M.
, and
Dunning
,
C. E.
,
2013
, “
Finite Element Modeling Mesh Quality, Energy Balance, and Validation Methods: A Review With Recommendations Associated With the Modeling of Bone Tissue
,”
J. Biomech.
,
46
(9), pp.
1477
1488
.
37.
Koller
,
H.
,
Hitzl
,
W.
,
Acosta
,
F.
,
Tauber
,
M.
,
Zenner
,
J.
,
Resch
,
H.
, Yukawa, Y., Meier, O., Schmidt, R., and Mayer, M.,
2009
, “
In Vitro Study of Accuracy of Cervical Pedicle Screw Insertion Using an Electronic Conductivity Device (ATPS Part III)
,”
Eur. Spine J.
,
18
(9), p.
130013
.
38.
Koller
,
H.
,
Acosta
,
F.
,
Tauber
,
M.
,
Fox
,
M.
,
Martin
,
H.
,
Forstner
,
R.
, Augat, P., Penzkofer, R., Pirich, C., Kässmann, H., Resch, H., and Hitzl, W.,
2008
, “
Cervical Anterior Transpedicular Screw Fixation (ATPS)—Part II: Accuracy of Manual Insertion and Pull-Out Strength of ATPS
,”
Eur. Spine J.
,
17
(
4
), pp.
539
555
.
39.
Panjabi
,
M. M.
,
Isomi
,
T.
, and
Wang
,
J. L.
,
1999
, “
Loosening at the Screw-Vertebra Junction in Multilevel Anterior Cervical Plate Constructs
,”
Spine (Philadelphia Pa 1976)
,
24
(
22
), pp.
2383
2388
.
40.
Koller
,
H.
,
Hempfing
,
A.
,
Ferraris
,
L.
,
Maier
,
O.
,
Hitzl
,
W.
, and
Metz-Stavenhagen
,
P.
,
2007
, “
4- and 5-Level Anterior Fusions of the Cervical Spine: Review of Literature and Clinical Results
,”
Eur. Spine J.
,
16
(
12
), pp.
2055
2071
.
41.
Pitzen
,
T. R.
,
Chrobok
,
J.
,
Stulik
,
J.
,
Ruffing
,
S.
,
Drumm
,
J.
,
Sova
,
L.
, Kucera, R., Vyskocil, T., and Steudel, W. I.,
2009
, “
Implant Complications, Fusion, Loss of Lordosis, and Outcome After Anterior Cervical Plating With Dynamic or Rigid Plates: Two-Year Results of a Multi-Centric, Randomized, Controlled Study
,”
Spine (Philadelphia Pa 1976)
,
34
(
7
), pp.
641
646
.
42.
Kim
,
H. W.
,
Ryu
,
J. I.
, and
Bak
,
K. H.
,
2011
, “
The Safety and Efficacy of Cadaveric Allografts and Titanium Cage as a Fusion Substitutes in Pyogenic Osteomyelitis
,”
J. Korean Neurosurg. Soc.
,
50
(
4
), pp.
348
356
.
43.
White
,
A. A.
, and
Panjabi
,
M. M.
,
1990
,
Clinical Biomechanics of the Spine
,
2nd ed.
,
JB Lippincott
,
Philadelphia, PA
, p.
98
.
44.
Cavanaugh
,
J. M.
,
Ozaktay
,
A. C.
,
Yamashita
,
H. T.
, and
King
,
A. I.
,
1996
, “
Lumbar Facet Pain: Biomechanics, Neuroanatomy, and Neurophysiology
,”
J. Biomech.
,
29
(
9
), pp.
1117
1129
.
45.
Chang
,
U. K.
,
Kim
,
D. H.
,
Lee
,
M. C.
,
Willenberg
,
R.
,
Kim
,
S. H.
, and
Lim
,
J.
,
2007
, “
Changes in Adjacent-Level Disc Pressure and Facet Joint Force After Cervical Arthroplasty Compared With Cervical Discectomy and Fusion
,”
J. Neurosurg. Spine
,
7
(
1
), pp.
33
39
.
46.
Ivancic
,
P. C.
,
Ito
,
S.
,
Tominaga
,
Y.
,
Rubin
,
W.
,
Coe
,
M. P.
,
Ndu
,
A. B.
, Carlson, E. J., and Panjabi, M. M.,
2008
, “
Whiplash Causes Increased Laxity of Cervical Capsular Ligament
,”
Clin. Biomech. (Bristol, Avon)
,
23
(
2
), pp.
159
165
.
You do not currently have access to this content.