There is a need to better understand the effects of intervertebral spacer material and design on the stress distribution in vertebral bodies and endplates to help reduce complications such as subsidence and improve outcomes following lumbar interbody fusion. The main objective of this study was to investigate the effects of spacer material on the stress and strain in the lumbar spine after interbody fusion with posterior instrumentation. A standard spacer was also compared with a custom-fit spacer, which conformed to the vertebral endplates, to determine if a custom fit would reduce stress on the endplates. A finite element (FE) model of the L4–L5 motion segment was developed from computed tomography (CT) images of a cadaveric lumbar spine. An interbody spacer, pedicle screws, and posterior rods were incorporated into the image-based model. The model was loaded in axial compression, and strain and stress were determined in the vertebra, spacer, and rods. Polyetheretherketone (PEEK), titanium, poly(para-phenylene) (PPP), and porous PPP (70% by volume) were used as the spacer material to quantify the effects on stress and strain in the system. Experimental testing of a cadaveric specimen was used to validate the model's results. There were no large differences in stress levels (<3%) at the bone–spacer interfaces and the rods when PEEK was used instead of titanium. Use of the porous PPP spacer produced an 8–15% decrease of stress at the bone–spacer interfaces and posterior rods. The custom-shaped spacer significantly decreased (>37%) the stress at the bone–spacer interfaces for all materials tested. A 28% decrease in stress was found in the posterior rods with the custom spacer. Of all the spacer materials tested with the custom spacer design, 70% porous PPP resulted in the lowest stress at the bone–spacer interfaces. The results show the potential for more compliant materials to reduce stress on the vertebral endplates postsurgery. The custom spacer provided a greater contact area between the spacer and bone, which distributed the stress more evenly, highlighting a possible strategy to decrease the risk of subsidence.

References

References
1.
Vallfors
,
B.
,
1985
, “
Acute, Subacute, and Chronic Low Back Pain: Clinical Symptoms, Absenteeism, and Working Environment
,”
Scand. J. Rehabil. Med. Suppl.
,
11
, pp.
1
98
.
2.
ACA,
2014
, “
Back Pain Facts and Statistics
,” American Chiropractic Association, Arlington, VA, accessed Dec. 8, 2016, http://www.acatoday.org/
3.
Orthopedic and Spine Institute of Los Angeles,
2014
, “
Degenerative Disc Disease
,” Orthopedic and Spine Institute of Los Angeles, Los Angeles, CA, accessed Oct. 7, 2016, http://www.laorthoexperts.com/spine/conditions/degenerative-disc-disease.php
4.
Behrbalk
,
E.
,
Uri
,
O.
,
Parks
,
R. M.
,
Musson
,
R.
,
Soh
,
R. C.
, and
Boszczyk
,
B. M.
,
2013
, “
Fusion and Subsidence Rate of Stand Alone Anterior Lumbar Interbody Fusion Using PEEK Cage With Recombinant Human Bone Morphogenetic Protein-2
,”
Eur. Spine J.
,
22
(
12
), pp.
2869
2875
.
5.
Kim
,
M. C.
,
Chung
,
H. T.
,
Cho
,
J. L.
,
Kim
,
D. J.
, and
Chung
,
N. S.
,
2013
, “
Subsidence of Polyetheretherketone Cage After Minimally Invasive Transforaminal Lumbar Interbody Fusion
,”
J. Spinal Disord. Tech.
,
26
(
2
), pp.
87
92
.
6.
Dennis
,
S.
,
Watkins
,
R.
,
Landaker
,
S.
,
Dillin
,
W.
, and
Springer
,
D.
,
1989
, “
Comparison of Disc Space Heights After Anterior Lumbar Interbody Fusion
,”
Spine
,
14
(
8
), pp.
876
878
.
7.
Beutler
,
W. J.
, and
Peppelman
,
W. C.
, Jr
.,
2003
, “
Anterior Lumbar Fusion With Paired Bak Standard and Paired Bak Proximity Cages: Subsidence Incidence, Subsidence Factors, and Clinical Outcome
,”
Spine J.
,
3
(
4
), pp.
289
293
.
8.
McClellan
,
J. W.
,
Mulconrey
,
D. S.
,
Forbes
,
R. J.
, and
Fullmer
,
N.
,
2006
, “
Vertebral Bone Resorption After Transforaminal Lumbar Interbody Fusion With Bone Morphogenetic Protein (Rhbmp-2)
,”
J. Spinal Disord. Tech.
,
19
(
7
), pp.
483
486
.
9.
Chrastil
,
J.
, and
Patel
,
A. A.
,
2012
, “
Complications Associated With Posterior and Transforaminal Lumbar Interbody Fusion
,”
J. Am. Acad. Orthop. Surg.
,
20
(
5
), pp.
283
291
.
10.
Martin
,
A. C.
,
Lakhera
,
N.
,
DiRienzo
,
A. L.
,
Safranski
,
D. L.
,
Schneider
,
A. S.
,
Yakacki
,
C. M.
, and
Frick
,
C. P.
,
2013
, “
Amorphous-to-Crystalline Transition of Polyetheretherketone–Carbon Nanotube Composites via Resistive Heating
,”
Compos. Sci. Technol.
,
89
, pp.
110
119
.
11.
Yakacki
,
C. M.
,
2013
, “
The Mechanical Properties and Degree of Crystallinity of Biomedical-Grade PEEK
,”
ANTEC
Technical Conference and Exhibition
, Cincinnati, OH, Apr. 22–24.
12.
Linde
,
F.
,
1994
, “
Elastic and Viscoelastic Properties of Trabecular Bone by a Compression Testing Approach
,”
Dan. Med. Bull.
,
41
(
2
), pp.
119
138
.
13.
Vadapalli
,
S.
,
Sairyo
,
K.
,
Goel
, V
. K.
,
Robon
,
M.
,
Biyani
,
A.
,
Khandha
,
A.
, and
Ebraheim
,
N. A.
,
2006
, “
Biomechanical Rationale for Using Polyetheretherketone (PEEK) Spacers for Lumbar Interbody Fusion—A Finite Element Study
,”
Spine
,
31
(
26
), pp.
E992
E998
.
14.
Galbusera
,
F.
,
Schmidt
,
H.
, and
Wilke
,
H. J.
,
2012
, “
Lumbar Interbody Fusion: A Parametric Investigation of a Novel Cage Design With and Without Posterior Instrumentation
,”
Eur. Spine J.
,
21
(
3
), pp.
455
462
.
15.
Chatham
,
L.
,
Patel
,
V. V.
, and
Carpenter
,
R. D.
,
2011
, “
Effects of Age-Related Cortical Thinning and Trabecular Bone Loss on the Strain Distribution in the Lumbar Spine Following Interbody Fusion
,”
33rd Annual Meeting of the American Society for Bone and Mineral Research
, San Diego, CA, Sept. 16–20.
16.
Chatham
,
L.
,
Patel
,
V. V.
, and
Carpenter
,
R. D.
,
2013
, “
Subject-Specific Differences in Strain Levels in the Lumbar Spine Following Interbody Fusion
,”
Orthopaedic Research Society Annual Meeting
(
ORS
), San Antonio, TX.
17.
Fantigrossi
,
A.
,
Galbusera
,
F.
,
Raimondi
,
M. T.
,
Sassi
,
M.
, and
Fornari
,
M.
,
2007
, “
Biomechanical Analysis of Cages for Posterior Lumbar Interbody Fusion
,”
Med. Eng. Phys.
,
29
(
1
), pp.
101
109
.
18.
Mosekilde
,
L.
,
1998
, “
The Effect of Modelling and Remodelling on Human Vertebral Body Architecture
,”
Technol. Health Care
,
6
(
5–6
), pp.
287
297
.
19.
Riggs
,
B. L.
,
Melton
,
L. J.
, 3rd
,
Robb
,
R. A.
,
Camp
,
J. J.
,
Atkinson
,
E. J.
,
Peterson
,
J. M.
,
Rouleau
,
P. A.
,
McCollough
,
C. H.
,
Bouxsein
,
M. L.
, and
Khosla
,
S.
,
2004
, “
Population-Based Study of Age and Sex Differences in Bone Volumetric Density, Size, Geometry, and Structure at Different Skeletal Sites
,”
J. Bone Miner. Res.
,
19
(
12
), pp.
1945
1954
.
20.
Kopperdahl
,
D. L.
,
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2002
, “
Quantitative Computed Tomography Estimates of the Mechanical Properties of Human Vertebral Trabecular Bone
,”
J. Orthop. Res.
,
20
(
4
), pp.
801
805
.
21.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
, V
. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.
22.
Frick
,
C. P.
,
Dirienzo
,
A. L.
,
Hoyt
,
A. J.
,
Safranski
,
D. L.
,
Saed
,
M.
,
Losty
,
E. J.
, and
Yakacki
,
C. M.
,
2013
, “
High-Strength Poly(Para-Phenylene) as an Orthopedic Biomaterial
,”
J. Biomed. Mater. Res. A
,
102
(
9
), pp.
3122
3129
.
23.
Kurtz
,
S. M.
, and
Devine
,
J. N.
,
2007
, “
PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants
,”
Biomaterials
,
28
(
32
), pp.
4845
4869
.
24.
Hoyt
,
A. J.
,
Yakacki
,
C. M.
,
Fertig
,
R. S.
, 3rd
,
Dana Carpenter
,
R.
, and
Frick
,
C. P.
,
2015
, “
Monotonic and Cyclic Loading Behavior of Porous Scaffolds Made From Poly(Para-Phenylene) for Orthopedic Applications
,”
J. Mech. Behav. Biomed. Mater.
,
41
, pp.
136
148
.
25.
DiRienzo
,
A. L.
,
Yakacki
,
C. M.
,
Frensemeier
,
M.
,
Schneider
,
A. S.
,
Safranski
,
D. L.
,
Hoyt
,
A. J.
, and
Frick
,
C. P.
,
2014
, “
Porous Poly(Para-Phenylene) Scaffolds for Load-Bearing Orthopedic Applications
,”
J. Mech. Behav. Biomed. Mater.
,
30
, pp.
347
357
.
26.
Ji
,
S.
,
Gu
,
Q.
, and
Xia
,
B.
,
2006
, “
Porosity Dependence of Mechanical Properties of Solid Materials
,”
J. Mater. Sci.
,
41
(
6
), pp.
1757
1768
.
27.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Schajer
,
G. S.
, and
Robertson
,
C. I.
,
1982
, “
The Mechanics of Two-Dimensional Cellular Materials
,”
Proc. R. Soc. A
,
382
(
1782
), pp.
25
42
.
28.
Rohlmann
,
A.
,
Gabel
,
U.
,
Graichen
,
F.
,
Bender
,
A.
, and
Bergmann
,
G.
,
2007
, “
An Instrumented Implant for Vertebral Body Replacement That Measures Loads in the Anterior Spinal Column
,”
Med. Eng. Phys.
,
29
(
5
), pp.
580
585
.
29.
Rohlmann
,
A.
,
Petersen
,
R.
,
Schwachmeyer
,
V.
,
Graichen
,
F.
, and
Bergmann
,
G.
,
2012
, “
Spinal Loads During Position Changes
,”
Clin. Biomech.
,
27
(
8
), pp.
754
758
.
30.
Yosibash
,
Z.
,
Katz
,
A.
, and
Milgrom
,
C.
,
2013
, “
Toward Verified and Validated Fe Simulations of a Femur With a Cemented Hip Prosthesis
,”
Med. Eng. Phys.
,
35
(
7
), pp.
978
987
.
31.
Parthasarathy
,
J.
,
Starly
,
B.
,
Raman
,
S.
, and
Christensen
,
A.
,
2010
, “
Mechanical Evaluation of Porous Titanium (Ti6Al4V) Structures With Electron Beam Melting (EBM)
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
3
), pp.
249
259
.
32.
Evans
,
N. T.
,
Torstrick
,
F. B.
,
Lee
,
C. S. D.
,
Dupont
,
K. M.
,
Safranski
,
D. L.
,
Chang
,
W. A.
,
Macedo
,
A. E.
,
Lin
,
A. S. P.
,
Boothby
,
J. M.
,
Whittingslow
,
D. C.
,
Carson
,
R. A.
,
Guldberg
,
R. E.
, and
Gall
,
K.
,
2015
, “
High-Strength, Surface-Porous Polyether–Ether–Ketone for Load-Bearing Orthopedic Implants
,”
Acta Biomater.
,
13
, pp.
159
167
.
33.
Zhang
,
H.
,
Mao
,
X.
,
Du
,
Z.
,
Jiang
,
W.
,
Han
,
X.
,
Zhao
,
D.
,
Han
,
D.
, and
Li
,
Q.
,
2016
, “
Three Dimensional Printed Macroporous Polylactic Acid/Hydroxyapatite Composite Scaffolds for Promoting Bone Formation in a Critical-Size Rat Calvarial Defect Model
,”
Sci. Technol. Adv. Mater.
,
17
(
1
), pp.
136
148
.
34.
Barui
,
S.
,
Chatterjee
,
S.
,
Mandal
,
S.
,
Kumar
,
A.
, and
Basu
,
B.
,
2017
, “
Microstructure and Compression Properties of 3D Powder Printed Ti–6Al–4V Scaffolds With Designed Porosity: Experimental and Computational Analysis
,”
Mater. Sci. Eng. C
,
70
(
Pt. 1
), pp.
812
823
.
35.
Provaggi
,
E.
,
Leong
,
J. J.
, and
Kalaskar
,
D. M.
,
2016
Applications of 3D Printing in the Management of Severe Spinal Conditions
,”
Proc. Inst. Mech. Eng., Part H
(epub).
36.
Abduo
,
J.
,
Lyons
,
K.
,
Waddell
,
N.
,
Bennani
,
V.
, and
Swain
,
M.
,
2012
, “
A Comparison of Fit of CNC-Milled Titanium and Zirconia Frameworks to Implants
,”
Clin. Implant Dent. Relat. Res.
,
14
(
Suppl. 1
), pp.
e20
e29
.
37.
Munoz
,
S.
,
Ramos
,
V.
, Jr.
, and
Dickinson
,
D. P.
,
2016
Comparison of Margin Discrepancy of Complete Gold Crowns Fabricated Using Printed, Milled, and Conventional Hand-Waxed Patterns
,”
J. Prosthet. Dent.
(epub).
You do not currently have access to this content.