A wireless medical capsule for measuring the contact pressure between a mobile capsule and the small intestine lumen was developed. Two pressure sensors were used to measure and differentiate the contact pressure and the small intestine intraluminal pressure. After in vitro tests of the capsule, it was surgically placed and tested in the proximal small intestine of a pig model. The capsule successfully gathered and transmitted the pressure data to a receiver outside the body. The measured pressure signals in the animal test were analyzed in the time and frequency domains, and a mathematic model was presented to describe the different factors influencing the contact pressure. A novel signal processing method was applied to isolate the contraction information from the contact pressure. The result shows that the measured contact pressure was 1.08 ± 0.08 kPa, and the small intestine contraction pressure's amplitude and rate were 0.29 ± 0.046 kPa and 12 min−1. Moreover, the amplitudes and rates of pressure from respiration and heartbeat were also estimated. The successful preliminary evaluation of this capsule implies that it could be used in further systematic investigation of small intestine contact pressure on a mobile capsule-shaped bolus.

References

References
1.
Moglia
,
A.
,
Menciassi
,
A.
,
Schurr
,
M. O.
, and
Dario
,
P.
,
2006
, “
Wireless Capsule Endoscopy: From Diagnostic Devices to Multipurpose Robotic Systems
,”
Biomed. Microdevices
,
9
(
2
), pp.
235
243
.
2.
Ciuti
,
G.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2011
, “
Capsule Endoscopy: From Current Achievements to Open Challenges
,”
IEEE Rev. Biomed. Eng.
,
4
, pp.
59
72
.
3.
McCaffrey
,
C.
,
Chevalerias
,
O.
,
O'Mathuna
,
C.
, and
Twomey
,
K.
,
2008
, “
Swallowable-Capsule Technology
,”
IEEE Pervasive Comput.
,
7
(
1
), pp.
23
29
.
4.
Woods
,
S. P.
, and
Constandinou
,
T. G.
,
2013
, “
Wireless Capsule Endoscope for Targeted Drug Delivery: Mechanics and Design Considerations
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
945
953
.
5.
Xie
,
W.
,
Kothari
,
V.
, and
Terry
,
B. S.
,
2015
, “
A Bio-Inspired Attachment Mechanism for Long-Term Adhesion to the Small Intestine
,”
Biomed. Microdevices
,
17
(
4
), p.
68
.
6.
Yim
,
S.
,
Gultepe
,
E.
,
Gracias
,
D. H.
, and
Sitti
,
M.
,
2014
, “
Biopsy Using a Magnetic Capsule Endoscope Carrying, Releasing, and Retrieving Untethered Microgrippers
,”
IEEE Trans. Biomed. Eng.
,
61
(
2
), pp.
513
521
.
7.
Slawinski
,
P. R.
,
Obstein
,
K. L.
, and
Valdastri
,
P.
,
2015
, “
Emerging Issues and Future Developments in Capsule Endoscopy
,”
Tech. Gastrointest. Endoscopy
,
17
(
1
), pp.
40
46
.
8.
Yim
,
S.
, and
Sitti
,
M.
,
2012
, “
Design and Rolling Locomotion of a Magnetically Actuated Soft Capsule Endoscope
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
183
194
.
9.
Kim
,
J.-Y.
,
Kwon
,
Y.-C.
, and
Hong
,
Y.-S.
,
2012
, “
Automated Alignment of Rotating Magnetic Field for Inducing a Continuous Spiral Motion on a Capsule Endoscope With a Twistable Thread Mechanism
,”
Int. J. Precis. Eng. Manuf.
,
13
(
3
), pp.
371
377
.
10.
Terry
,
B. S.
,
Schoen
,
J. A.
, and
Rentschler
,
M. E.
,
2012
, “
Characterization and Experimental Results of a Novel Sensor for Measuring the Contact Force From Myenteric Contractions
,”
IEEE Trans. Biomed. Eng.
,
59
(
7
), pp.
1971
1977
.
11.
Francisco
,
M. M.
,
Terry
,
B. S.
,
Schoen
,
J. A.
, and
Rentschler
,
M. E.
,
2016
, “
Intestinal Manometry Force Sensor for Robotic Capsule Endoscopy: An Acute, Multi-Patient In Vivo Animal and Human Study
,”
IEEE Trans. Biomed. Eng.
,
63
(
5
), pp.
943
951
.
12.
Terry
,
B. S.
,
Lyle
,
A. B.
,
Schoen
,
J. A.
, and
Rentschler
,
M. E.
,
2011
, “
Preliminary Mechanical Characterization of the Small Bowel for In Vivo Robotic Mobility
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
091010
.
13.
Samsom
,
M.
,
Smout
,
A. J.
,
Hebbard
,
G.
,
Fraser
,
R.
,
Omari
,
T.
,
Horowitz
,
M.
, and
Dent
,
J.
,
1998
, “
A Novel Portable Perfused Manometric System for Recording of Small Intestinal Motility
,”
Neurogastroenterol. Motil.
,
10
(
2
), pp.
139
148
.
14.
Connell
,
A. M.
,
1961
, “
The Motility of the Small Intestine
,”
Postgrad. Med. J.
,
37
(
434
), pp.
703
716
.
15.
Lee
,
Y. Y.
,
Erdogan
,
A.
, and
Rao
,
S. S. C.
,
2014
, “
How to Assess Regional and Whole Gut Transit Time With Wireless Motility Capsule
,”
J. Neurogastroenterol. Motil.
,
20
(
2
), pp.
265
270
.
16.
Kim
,
Y.
,
Lee
,
G.
,
Park
,
S.
,
Kim
,
B.
,
Park
,
J.-O.
, and
Cho
,
J.-H.
,
2005
, “
Pressure Monitoring System in Gastro-Intestinal Tract
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
1321
1326
.
17.
Wang
,
W.-X.
,
Yan
,
G.-Z.
,
Sun
,
F.
,
Jiang
,
P.-P.
,
Zhang
,
W.-Q.
, and
Zhang
,
G.-F.
,
2005
, “
A Non-Invasive Method for Gastrointestinal Parameter Monitoring
,”
World J. Gastroenterol.: WJG
,
11
(
4
), pp.
521
524
.
18.
Hoeg
,
H. D.
,
Slatkin
,
A. B.
,
Burdick
,
J. W.
, and
Grundfest
,
W. S.
,
2000
, “
Biomechanical Modeling of the Small Intestine as Required for the Design and Operation of a Robotic Endoscope
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 24–28, pp.
1599
1606
.
19.
Wang
,
X.
,
Meng
,
M. Q.-H.
, and
Chan
,
Y.
,
2005
, “
Physiological Factors of the Small Intestine in Design of Active Capsule Endoscopy
,”
27th Annual Conference on IEEE Engineering in Medicine and Biology
(
EMBS
), Shanghai, China, Sept. 1–4, pp.
2942
2945
.
20.
Miftahof
,
R.
, and
Akhmadeev
,
N.
,
2007
, “
Dynamics of Intestinal Propulsion
,”
J. Theor. Biol.
,
246
(
2
), pp.
377
393
.
21.
Woo
,
S. H. A.
,
Mohy-Ud-Din
,
Z.
, and
Cho
,
J. H.
,
2013
, “
Telemetry Capsule for Measuring Contractile Motion in the Small Intestine
,”
Biomed. Microdevices
,
15
(
1
), pp.
63
72
.
22.
Li
,
P.
, and
Terry
,
B. S.
,
2014
, “
Design of a Swallowable Microrobotic Capsule for Measuring Small Intestine Pressure
,”
ASME J. Med. Devices
,
8
(
3
), p.
030910
.
23.
Natali
,
C. D.
,
Beccani
,
M.
,
Obstein
,
K. L.
, and
Valdastri
,
P.
,
2014
, “
A Wireless Platform for In Vivo Measurement of Resistance Properties of the Gastrointestinal Tract
,”
Physiol. Meas.
,
35
(
7
), pp.
1197
1214
.
24.
Emmanuel
,
A.
, and
Roy
,
A.
,
2007
, “
Small Intestine and Colon Motility
,”
Medicine
,
35
(
5
), pp.
272
276
.
25.
Li
,
P.
,
Kothari
,
V.
, and
Terry
,
B. S.
,
2015
, “
Design and Preliminary Experimental Investigation of a Capsule for Measuring the Small Intestine Contraction Pressure
,”
IEEE Trans. Biomed. Eng.
,
62
(
11
), pp.
2702
2708
.
26.
Li
,
P.
,
Kothari
,
V.
, and
Terry
,
B. S.
,
2015
, “
Processing and Analysis of Small Intestine Pressure Signal Based on Empirical Mode Decomposition
,”
ASME J. Med. Devices
,
9
(
2
), p.
020925
.
27.
Maqbool
,
S.
,
Parkman
,
H. P.
, and
Friedenberg
,
F. K.
,
2009
, “
Wireless Capsule Motility: Comparison of the SmartPill® GI Monitoring System With Scintigraphy for Measuring Whole Gut Transit
,”
Dig. Dis. Sci.
,
54
(
10
), pp.
2167
2174
.
28.
Saad
,
R. J.
, and
Hasler
,
W. L.
,
2011
, “
A Technical Review and Clinical Assessment of the Wireless Motility Capsule
,”
Gastroenterol. Hepatol.
,
7
(
12
), pp.
795
804
.
29.
Terry
,
B. S.
,
Francisco
,
M. M.
,
Schoen
,
J. A.
, and
Rentschler
,
M. E.
,
2013
, “
Sensor for Measuring the Contact Force From Human Myenteric Contractions for In Vivo Robotic Capsule Endoscope Mobility
,”
ASME J. Med. Devices
,
7
(
3
), p.
030911
.
30.
Böhm
,
B.
,
Milsom
,
J. W.
, and
Fazio
,
V. W.
,
1995
, “
Postoperative Intestinal Motility Following Conventional and Laparoscopic Intestinal Surgery
,”
Arch. Surg.
,
130
(
4
), pp.
415
419
.
31.
Miller
,
G. H.
,
1926
, “
The Effects of General Anesthesia on the Muscular Activity of the Gastrointestinal Tract A Study of Ether, Chloroform, Ethylene and Nitrous-Oxide
,”
J. Pharm. Exp. Thera.
,
27
(1), pp.
41
59
.
32.
Szalai
,
M.
,
Kánainé
,
V.
,
Kiss
,
G.
,
Regőczi
,
H.
,
Horváth
,
Z.
, and
Rácz
,
I.
,
2012
, “
Small Bowel Transit Time in Patients Undergoing Capsule Endoscopy: Analyzis of Determining Factors
,”
Z. Gastroenterol.
,
50
(
5
), p. A73.
33.
Valdastri
,
P.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2008
, “
Transmission Power Requirements for Novel ZigBee Implants in the Gastrointestinal Tract
,”
IEEE Trans. Biomed. Eng.
,
55
(
6
), pp.
1705
1710
.
34.
Fass
,
J.
,
Bares
,
R.
,
Hermsdorf
,
V.
, and
Schumpelick
,
V.
,
1995
, “
Effects of Intravenous Ketamine on Gastrointestinal Motility in the Dog
,”
Intensive Care Med.
,
21
(
7
), pp.
584
589
.
35.
Chan
,
F. P.
,
Li
,
K. C.
,
Heiss
,
S. G.
, and
Razavi
,
M. K.
,
1999
, “
A Comprehensive Approach Using MR Imaging to Diagnose Acute Segmental Mesenteric Ischemia in a Porcine Model
,”
Am. J. Roentgenol.
,
173
(
3
), pp.
523
529
.
36.
Duperret
,
S.
,
Lhuillier
,
F.
,
Piriou
,
V.
,
Vivier
,
E.
,
Metton
,
O.
,
Branche
,
P.
,
Annat
,
G.
,
Bendjelid
,
K.
, and
Viale
,
J. P.
,
2007
, “
Increased Intra-Abdominal Pressure Affects Respiratory Variations in Arterial Pressure in Normovolaemic and Hypovolaemic Mechanically Ventilated Healthy Pigs
,”
Intensive Care Med.
,
33
(
1
), pp.
163
171
.
37.
Allen
,
J.
,
2007
, “
Photoplethysmography and Its Application in Clinical Physiological Measurement
,”
Physiol. Meas.
,
28
(
3
), pp.
R1
R39
.
38.
Miftahof
,
R.
, and
Fedotov
,
E.
,
2005
, “
Intestinal Propulsion of a Solid Non-Deformable Bolus
,”
J. Theor. Biol.
,
235
(
1
), pp.
57
70
.
39.
Terry
,
B. S.
,
Schoen
,
J. A.
, and
Rentschler
,
M. E.
,
2012
, “
Measurements of the Contact Force From Myenteric Contractions on a Solid Bolus
,”
J. Rob. Surg.
,
7
(
1
), pp.
53
57
.
40.
Stathopoulos
,
E.
,
Schlageter
,
V.
,
Meyrat
,
B.
,
de Ribaupierre
,
Y.
, and
Kucera
,
P.
,
2005
, “
Magnetic Pill Tracking: A Novel Non-Invasive Tool for Investigation of Human Digestive Motility
,”
Neurogastroenterol. Motil.
,
17
(
1
), pp.
148
154
.
41.
Worsøe
,
J.
,
Fynne
,
L.
,
Gregersen
,
T.
,
Schlageter
,
V.
,
Christensen
,
L. A.
,
Dahlerup
,
J. F.
,
Rijkhoff
,
N. J.
,
Laurberg
,
S.
, and
Krogh
,
K.
,
2011
, “
Gastric Transit and Small Intestinal Transit Time and Motility Assessed by a Magnet Tracking System
,”
BMC Gastroenterol.
,
11
(
1
), p.
145
.
You do not currently have access to this content.