Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain.

References

References
1.
Hammes
,
M.
,
Funaki
,
B.
, and
Coe
,
F.
,
2008
, “
Cephalic Arch Stenosis in Patients With Fistula Access for Hemodialysis: Relationship to Diabetes and Thrombosis
,”
Hemodialysis Int.
,
12
(
1
), pp.
85
89
.
2.
Ene-Iordache
,
B.
,
Semperboni
,
C.
,
Dubini
,
G.
, and
Remuzzi
,
A.
,
2015
, “
Disturbed Flow in a Patient-Specific Arteriovenous Fistula for Hemodialysis: Multidirectional and Reciprocating Near-Wall Flow Patterns
,”
J. Biomech.
,
48
(
10
), pp.
2195
2200
.
3.
Krishnamoorthy
,
M.
,
Banarjee
,
R.
,
Wang
,
Y.
,
Zhang
,
J.
,
Roy
,
A.
,
Khoury
,
S.
,
Arend
,
L.
,
Rudich
,
S.
, and
Roy-Chaudhury
,
P.
,
2008
, “
Hemodynamic Wall Shear Stress Profiles Influence the Magnitude and Pattern of Stenosis in a Pig AV Fistula
,”
Kidney Int.
,
74
(
11
), pp.
1410
1419
.
4.
Akherat
,
S. M. J. M.
,
2016
, “
Development of a Predictive Framework to Forecast Venous Stenosis
,”
Doctoral dissertation
, Illinois Institute of Technology, Chicago, IL.
5.
Akherat
,
S. M. M.
,
Cassel
,
K.
,
Hammes
,
M.
, and
Boghosian
,
M.
,
2016
, “
Wall Shear Stress Restoration in Dialysis Patient's Venous Stenosis: Elucidation Via 3D CFD and Shape Optimization
,”
APS
Division of Fluid Dynamics, College Park, MD.
6.
Akherat
,
S. M. M.
,
Boghosian
,
M.
,
Cassel
,
K.
, and
Hammes
,
M.
,
2015
, “
A Computational Approach to Model Vascular Adaptation During Chronic Hemodialysis: Shape Optimization as a Substitute for Growth Modeling
,”
APS Division of Fluid Dynamics, College Park, MD
.
7.
Abraham
,
F.
,
Behr
,
M.
, and
Heinkenschloss
,
M.
,
2005
, “
Shape Optimization in Steady Blood Flow: A Numerical Study of Non-Newtonian Effects
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
2
), pp.
127
137
.
8.
Barnes
,
H.
,
Townsend
,
P.
, and
Walter
,
K.
,
1971
, “
On Pulsatile Flow of Non-Newtonian Liquids
,”
Rheol. Acta
,
10
, pp.
517
527
.
9.
Taylor
,
C. A.
, and
Humphrey
,
J. D.
,
2009
, “
Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
198
(45–46), pp.
3514
3523
.
10.
Baaijens
,
J. P.
,
van Steehoven
,
A. A.
, and
Janssen
,
J.
,
1993
, “
Numerical Analysis of Steady Generalized Newtonian Blood Flow in a 2D Model of the Carotid Artery Bifurcation
,”
Biorheology
,
30
(
1
), pp.
63
74
.
11.
Perktold
,
K.
,
Peter
,
R.
, and
Resch
,
M.
,
1989
, “
Pulsatile Non-Newtonian Blood Flow Simulation Through a Bifurcation With an Aneurysm
,”
Biorheology
,
26
(
6
), pp.
1011
1030
.
12.
Leuprecht
,
A.
, and
Perktold
,
K.
,
2001
, “
Computer Simulation of Non-Newtonian Effects on Blood Flow in Large Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
2
), pp.
149
163
.
13.
Perktold
,
K.
,
Resch
,
M.
, and
Florian
,
H.
,
1991
, “
Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
464
475
.
14.
Liepsch
,
D.
, and
Moravec
,
S.
,
1984
, “
Pulsatile Flow of Non-Newtonian Fluid in Distensible Models of Human Arteries
,”
Biorheology
,
21
(
4
), pp.
571
586
.
15.
Cho
,
Y.
, and
Kensey
,
K.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel—Part 1: Steady Flows
,”
Biorheology
,
28
(
3–4
), pp.
241
262
.
16.
van Wyk
,
S.
,
Wittberg
,
L. P.
,
Bulusu
,
K. V.
,
Fuchs
,
L.
, and
Plesniak
,
M. W.
,
2015
, “
Non-Newtonian Perspectives on Pulsatile Blood-Analog Flows in a 180 Curved Artery Model
,”
Phys. Fluids
,
27
(
7
), p.
071901
.
17.
Johnston
,
B.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2004
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
.
18.
Ramachandran
,
R.
,
Maani
,
N.
,
Rayz
,
V. L.
, and
Nosonovsky
,
M.
,
2016
, “
Vibrations and Spatial Patterns in Biomimetic Surfaces: Using the Shark-Skin Effect to Control Blood Clotting
,”
Philos. Trans. R. Soc. A
,
374
(
2073
).
19.
Ghasemi
,
A.
,
Pathak
,
A.
, and
Raessi
,
M.
,
2014
, “
Computational Simulation of the Interactions Between Moving Rigid Bodies and Incompressible Two-Fluid Flows
,”
Comput. Fluids
,
94
, pp.
1
13
.
20.
Ghasemi
,
A.
,
Anbarsooz
,
M.
,
Malvandi
,
A.
,
Ghasemi
,
A.
, and
Hedayati
,
F.
,
2017
, “
A Nonlinear Computational Modeling of Wave Energy Converters: A Tethered Point Absorber and a Bottom-Hinged Flap Device
,”
Renewable Energy
,
103
, pp.
774
785
.
21.
Buchanan
,
J. R.
,
Kleinstreuer
,
C.
, and
Comer
,
J. K.
, 2000, “
Rheological Effects on Pulsatile Hemodynamics in a Stenosed Tube
,”
Computers & Fluids
,
29
(6), pp. 695–724.
22.
Ku
,
D. N.
, and
Liepsch
,
D.
, 1986, “
The Effects of Non-Newtonian Viscoelasticity and Wall Elasticity on Flow at a 90 Degrees Bifurcation
,”
Biorheology
,
23
(4), pp. 359–370.
23.
Akherat
,
S. M.
, and Kimiaghalam, M. A, 2010, “
Numerical Investigation on Pulsatile Blood Flow Through Consecutive Axi-Symmetric Stenosis in Coronary Artery
,”
ASME
Paper No. ESDA2010-24534.
24.
Kennedy
,
J. S.
, 1990, “
On the Application of a Constitutive Equation for Whole Human Blood
,”
ASME J. Biomech. Eng.
,
112
(2), pp. 198–206.
25.
Akherat
,
S. J.
,
Boghosian
,
M. E.
,
Cassel
,
K. W.
, and
Hammes
,
M. S.
, 2015, “
Intimal Hyperplasia and Its Implications in the Cephalic Arch: A Numerical Study of Non-Physiological Hemodynamics in Patients With Brachiocephalic Fistulae
,” Summer Biomechanics, Bioengineering, & Biotransport Conference (
SB3C
), Snowbird, Utah, June 17–20.
26.
Walburn
,
F. J.
, and
Schneck
,
D. J.
,
1976
, “
A Constitutive Equation for Whole Human Blood
,”
Biorheology
,
13
(
3
), pp.
201
210
.
27.
Dhar
,
P.
,
Eadon
,
M.
,
Hallak
,
P.
,
Munoz
,
R. A.
, and
Hammes
,
M.
, 2012, “
Whole Blood Viscosity: Effect of Hemodialysis Treatment and Implications for Access Patency and Vascular Disease
,”
Clin. Hemorheol. Microcirc.
,
51
(4), pp. 265–275.
28.
Quemada
,
D.
, 1978, “
Rheology of Concentrated Disperse Systems II. A Model for Non-Newtonian Shear Viscosity in Steady Flows
,”
Rheol. Acta
,
17
(6), pp. 632–642.
29.
Caro
,
G.
,
Pedley
,
T.
,
Schroter
,
R.
, and
Seed
,
W.
, 1978,
The Mechanics of the Circulation
, Oxford University Press, Oxford, UK.
30.
Akherat
,
S, M.
, 2013, “
Non-Newtonian Effects in Hemodynamic Simulations of the Cephalic Vein in End Stage Renal Disease Patients
,”
Doctoral dissertation
, Illinois Institute of Technology, Chicago, IL.
31.
Quemada
,
D.
, 1977, “
Rheology of Concentrated Disperse Systems and Minimum Energy Dissipation Principle
,”
Rheol. Acta
.,
16
(1), pp. 82–94.
32.
Quemada
,
D.
, 1978, “
Rheology of Concentrated Disperse Systems III. General Features of the Proposed Non-Newtonian Model. Comparison With Experimental Data
,”
Rheol. Acta.
,
17
(6), pp. 643–653.
33.
Decorato
,
I.
,
Kharboutly
,
Z.
,
Vassallo
,
T.
,
Penrose
,
J.
,
Legallais
,
C.
, and
Salsac
,
A. V.
, 2014, “
Numerical Simulation of the Fluid Structure Interactions in a Compliant Patient-Specific Arteriovenous Fistula
,”
Int. J. Num. Meth. Biomed. Eng.
,
30
(2), pp. 143–159.
34.
Neofytou
,
P.
, and
Drikakis
,
D.
, 2003, “
Non-Newtonian Flow Instability in a Channel With a Sudden Expansion
,”
J. Non-Newtonian Fl. Mech.
,
111
(2–3), pp. 127–150.
35.
Li
,
Z.
, and
Kleinstreuer
,
C.
, 2005, “
Blood Flow and Structure Interactions in a Stented Abdominal Aortic Aneurysm Model
,”
Med. Eng. & Phy.
,
27
(5), pp. 369–382.
36.
Neofytou
,
P.
, 2004, “
Comparison of Blood Rheological Models for Physiological Flow Simulation
,”
Biorheology
,
41
(
6
), pp.
693
714
.
37.
Boghosia
,
M.
,
Cassel
,
K.
,
Hammes
,
M.
,
Funaki
,
B.
,
Kim
,
S.
,
Qian
,
X.
,
Wang
,
X.
,
Dhar
,
P.
, and
Hines
,
J.
, 2014, “
Hemodynamics in the Cephalic Arch of a Brachiocephalic Fistula
,”
Med. Eng. & Phy.
,
36
(7), pp. 822–830.
38.
Forrester
,
J. H.
, and
Young
,
D. F.
, 1970, “
Flow Through a Converging-Diverging Tube and its Implications in Occlusive Vascular Disease—II: Theoretical and Experimental Results and Their Implications
,”
J. Biomech.
,
3
(3), pp. 307–310.
39.
Van Tricht
,
I.
,
De Wachter
,
D.
,
Tordoir
,
J.
, and
Verdonck
,
P.
, 2005, “
Hemodynamics and Complications Encountered With Arteriovenous Fistulas and Grafts as Vascular Access for Hemodialysis: A Review
,”
Annals of Biomed. Eng.
,
33
(
9
), pp. 1142–1157.
40.
Hammes
,
M.
,
Boghosian
,
M.
,
Cassel
,
K.
,
Watson
,
S.
,
Funaki
,
B.
,
Doshi
,
T.
,
Akherat
,
S. J.
,
Hines
,
J.
, and
Coe
,
F.
, 2016, “
Increased Inlet Blood Flow Velocity Predicts Low Wall Shear Stress in the Cephalic Arch of Patients With Brachiocephalic Fistula Access
,”
PloS One
,
11
(4), p. e0152873.
41.
Fischer
,
P. F.
,
Lottes
,
J. W.
, and
Kerkemeier
,
S. G.
, 2008, “
Nek5000
,” Argonne National Laboratory, Lemont, IL, http://nek5000.mcs.anl.gov
42.
Chandran
,
K. B.
,
Rittgers
,
S. E.
, and
Yoganathan
,
A.
,
2012
,
Biofluid Mechanics: The Human Circulation
, 2nd ed., CRC Press, Boca Raton, FL.
43.
Lee
,
S. W.
, and
Steinman
,
D. A.
, 2006, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
129
(2), pp. 273–278.
44.
Marrero
,
V. L.
,
Tichy
,
J. A.
,
Sahni
,
O.
, and
Jansen
,
K. E.
, 2014, “
Numerical Study of Purely Viscous Non-Newtonian Flow in an Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
,
136
(10), p. 101001.
45.
Akherat
,
S, M.
, 2016, “
On the Application of Viscoelastic and Viscoplastic Constitutive Relations in the CFD Bio-Fluid Simulations
,” arXiv preprint
arXiv:1608.01975
46.
Cherry
,
E. M.
, and
Eaton
,
J. K.
, 2013, “
Shear Thinning Effects on Blood Flow in Straight and Curved Tubes
,”
Phy. of Fluids
,
25
(7), p. 073104.
You do not currently have access to this content.