The availability of diverse mouse models is revealing increasingly greater information on arterial mechanics, including homeostatic adaptations and pathologic maladaptations to genetic, pharmacological, and surgical manipulations. Fundamental to understanding such biomechanical changes, however, is reliable information on appropriate control vessels. In this paper, we contrast 15 different geometrical and mechanical metrics of biaxial wall mechanics for the ascending aorta across seven different types of possible control mice. We show that there is a comforting similarity across these multiple controls for most, though not all, metrics. In particular, three potential controls, namely, noninduced conditional mice, exhibit higher values of distensibility, an important clinical metric of structural stiffness, and two of these potential controls also have higher values of intrinsic circumferential material stiffness. There is motivation, therefore, to understand better the biomechanical changes that can arise with noninduced Cre-lox or similar approaches for generating mutations conditionally. In cases of germline mutations generated by breeding heterozygous +/− mice, however, the resulting homozygous +/+ mice tend to exhibit properties similar to traditional (C57BL/6) controls.

References

References
1.
Gleason
,
R. L.
,
Gray
,
S. P.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2004
, “
A Multiaxial Computer-Controlled Organ Culture and Biomechanical Device for Mouse Carotid Arteries
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
787
795
.
2.
Bersi
,
M. R.
,
Ferruzzi
,
J.
,
Eberth
,
J. F.
,
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2014
, “
Consistent Biomechanical Phenotyping of Common Carotid Arteries From Seven Genetic, Pharmacological, and Surgical Mouse Models
,”
Ann. Biomed. Eng.
,
42
(
6
), pp.
1207
1223
.
3.
Ferruzzi
,
J.
,
Bersi
,
M. R.
, and
Humphrey
,
J. D.
,
2013
, “
Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1311
1330
.
4.
Ferruzzi
,
J.
,
Bersi
,
M. R.
,
Uman
,
S.
,
Yanagisawa
,
H.
, and
Humphrey
,
J. D.
,
2015
, “
Decreased Elastic Energy Storage, not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independent of Sex
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
31007
.
5.
Bellini
,
C.
,
Wang
,
S.
,
Milewicz
,
D. M.
, and
Humphrey
,
J. D.
,
2015
, “
Myh11R247C/R247C Mutations Increase Thoracic Aorta Vulnerability to Intramural Damage Despite a General Biomechanical Adaptivity
,”
J. Biomech.
,
48
(
1
), pp.
113
121
.
6.
Bellini
,
C.
,
Korneva
,
A.
,
Zilberberg
,
L.
,
Ramirez
,
F.
,
Rifkin
,
D. B.
, and
Humphrey
,
J. D.
,
2015
, “
Differential Ascending and Descending Aortic Mechanics Parallel Aneurysmal Propensity in a Mouse Model of Marfan Syndrome
,”
J. Biomech.
,
49
(
12
), pp.
2383
2389
.
7.
Bellini
,
C.
,
Kristofik
,
N. J.
,
Bersi
,
M. R.
,
Kyriakides
,
T. R.
, and
Humphrey
,
J. D.
,
2016
, “
A Hidden Structural Vulnerability in the Thrombospondin-2 Deficient Aorta
,” J. Mech. Beh. Biomed. Mat., (in press).
8.
Ferruzzi
,
J.
,
Murtada
,
S.
, II
,
Li
,
G.
,
Jiao
,
Y.
,
Uman
,
S.
,
Ting
,
M. Y. L.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2016
, “
Pharmacologically Improved Contractility Protects Against Aortic Dissection in Mice With Disrupted Transforming Growth Factor-Beta Signaling Despite Compromised Extracellular Matrix Properties
,”
Arterioscler. Thromb. Vasc. Biol.
,
36
(
5
), pp.
919
927
.
9.
Pereira
,
L.
,
Lee
,
S. Y.
,
Gayraud
,
B.
,
Andrikopoulos
,
K.
,
Shapiro
,
S. D.
,
Bunton
,
T.
,
Biery
,
N. J.
,
Dietz
,
H. C.
,
Sakai
,
L. Y.
, and
Ramirez
,
F.
,
1999
, “
Pathogenetic Sequence for Aneurysm Revealed in Mice Underexpressing Fibrillin-1
,”
Proc. Natl. Acad. Sci.
,
96
(
7
), pp.
3819
3823
.
10.
Yanagisawa
,
H.
,
Davis
,
E. C.
,
Starcher
,
B. C.
,
Ouchi
,
T.
,
Yanagisawa
,
M.
,
Richardson
,
J. A.
, and
Olson
,
E. N.
,
2002
, “
Fibulin-5 is an Elastin-Binding Protein Essential for Elastic Fibre Development in vivo
,”
Nature
,
415
(
6868
), pp.
168
171
.
11.
Huang
,
J.
,
Davis
,
E. C.
,
Chapman
,
S. L.
,
Budatha
,
M.
,
Marmorstein
,
L. Y.
,
Word
,
R. A.
, and
Yanagisawa
,
H.
,
2010
, “
Fibulin-4 Deficiency Results in Ascending Aortic Aneurysms: A Potential Link Between Abnormal Smooth Muscle Cell Phenotype and Aneurysm Progression
,”
Circ. Res.
,
106
(
3
), pp.
583
592
.
12.
Kuang
,
S. Q.
,
Kwartler
,
C. S.
,
Byanova
,
K. L.
,
Pham
,
J.
,
Gong
,
L.
,
Prakash
,
S. K.
,
Huang
,
J.
,
Kamm
,
K. E.
,
Stull
,
J. T.
,
Sweeney
,
H. L.
, and
Milewicz
,
D. M.
,
2012
, “
Rare, Nonsynonymous Variant in the Smooth Muscle-Specific Isoform of Myosin Heavy Chain, MYH11, R247C, Alters Force Generation in the Aorta and Phenotype of Smooth Muscle Cells
,”
Circ. Res.
,
110
(
11
), pp.
1411
1422
.
13.
Li
,
W.
,
Li
,
Q.
,
Jiao
,
Y.
,
Qin
,
L.
,
Ali
,
R.
,
Zhou
,
J.
,
Ferruzzi
,
J.
,
Kim
,
R. W.
,
Geirsson
,
A.
,
Dietz
,
H. C.
,
Offermanns
,
S.
,
Humphrey
,
J. D.
, and
Tellides
,
G.
,
2014
, “
Tgfbr2 Disruption in Postnatal Smooth Muscle Impairs Aortic Wall Homeostasis
,”
J. Clin. Invest.
,
124
(
2
), pp.
755
767
.
14.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics—Cells, Tissues, and Organs
,
Springer-Verlag
,
New York
.
15.
Humphrey
,
J. D.
,
Eberth
,
J. F.
,
Dye
,
W. W.
, and
Gleason
,
R. L.
,
2009
, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
,
42
(
1
), pp.
1
8
.
16.
Shadwick
,
R. E.
,
1999
, “
Mechanical Design in Arteries
,”
J. Exp. Biol.
,
202
(
23
), pp.
3305
3313
.
17.
Wagenseil
,
J. E.
, and
Mecham
,
R. P.
,
2009
, “
Vascular Extracellular Matrix and Arterial Mechanics
,”
Physiol. Rev.
,
89
(
3
), pp.
957
989
.
18.
Laurent
,
S.
, and
Boutouyrie
,
P.
,
2015
, “
The Structural Factor of Hypertension
,”
Circ. Res.
,
116
(
6
), pp.
1007
1021
.
19.
Hu
,
J. H.
,
Wei
,
H.
,
Jaffe
,
M.
,
Airhart
,
N.
,
Du
,
L.
,
Angelov
,
S. N.
,
Yan
,
J.
,
Allen
,
J. K.
,
Kang
,
I.
,
Wight
,
T. N.
,
Fox
,
K.
,
Smith
,
A.
,
Enstrom
,
R.
, and
Dichek
,
D. A.
,
2015
, “
Postnatal Deletion of the Type II Transforming Growth Factor-β Receptor in Smooth Muscle Cells Causes Severe Aortopathy in Mice
,”
Arterioscler. Thromb. Vasc. Biol.
,
35
(
12
), pp.
2647
2656
.
20.
Muzumdar
,
M. D.
,
Tasic
,
B.
,
Miyamichi
,
K.
,
Li
,
N.
, and
Luo
,
L.
,
2007
, “
A Global Double-Fluorescent Cre Reporter Mouse
,”
Genesis
,
45
(
9
), pp.
593
605
.
21.
Harmon
,
K. J.
,
Couper
,
L. L.
, and
Lindner
,
V.
,
2000
, “
Strain-Dependent Vascular Remodeling Phenotypes in Inbred Mice
,”
Am. J. Pathol.
,
156
(
5
), pp.
1741
1748
.
22.
Korshunov
, V
. A.
, and
Berk
,
B. C.
,
2004
, “
Strain-Dependent Vascular Remodeling: the “Glagov Phenomenon” is Genetically Determined
,”
Circulation
,
110
(
2
), pp.
220
226
.
23.
Janssen
,
B. J.
,
De Celle
,
T.
,
Debets
,
J. J. M.
,
Brouns
,
A. E.
,
Callahan
,
M. F.
, and
Smith
,
T. L.
,
2011
, “
Effects of Isoflurane Anesthesia on the Cardiovascular Function of the C57BL/6 Mouse
,”
ILAR J.
,
52
(
3
), pp.
21
31
.
24.
Whitesall
,
S. E.
,
Hoff
,
J. B.
,
Vollmer
,
A. P.
, and
D'Alecy
,
L. G.
,
2004
, “
Comparison of Simultaneous Measurement of Mouse Systolic Arterial Blood Pressure by Radiotelemetry and Tail-Cuff Methods
,”
Am. J. Physiol. Heart Circ. Physiol.
,
286
(
6
), pp.
H2408
H2415
.
You do not currently have access to this content.