Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On this basis, the stiffness behavior of scaffolds was estimated from the FEA, and the results obtained were compared to the direct measurements of scaffold stiffness from the load–displacement material testing. The comparison illustrates that the Young's moduli estimated from the FEA and characterized geometry are in agreement with the ones of direct measurements. The developed method of estimating the mechanical behavior was also demonstrated effective with a nondegrading scaffold that displays the nonlinear stress–strain behavior. The in vivo monitoring of Young's modulus by morphology characterization also suggests the feasibility of characterizing experimentally the difference between in vivo and in vitro surface degradation of tissue engineering constructs.

References

References
1.
Little
,
C. J.
,
Bawolin
,
N. K.
, and
Chen
,
X. B.
,
2011
, “
Mechanical Properties of Natural Cartilage and Tissue Engineered Constructs
,”
Tissue Eng. Part B: Reviews
,
17
(
4
), pp.
213
227
.
2.
Sun
,
H.
,
Zhu
,
F.
,
Hu
,
Q.
, and
Krebsbach
,
P. H.
,
2014
, “
Controlling Stem Cell-Mediated Bone Regeneration Through Tailored Mechanical Properties of Collagen Scaffolds
,”
Biomaterials
,
35
(
4
), pp.
1176
1184
.
3.
Nama
,
J.
,
Johnson
,
J.
,
Lannutti
,
J.
, and
Agarwal
,
A.
,
2011
, “
Modulation of Embryonic Mesenchymal Progenitor Cell Differentiation Via Control Over Pure Mechanical Modulus in Electrospun Nanofibers
,”
Acta Biomater.
,
7
(
4
), pp.
1516
1524
.
4.
Olubamiji
,
A. D.
,
Izadifar
,
Z.
,
Si
,
J.
,
Cooper
,
D.
,
Eames
,
F.
, and
Chen
,
X. B.
,
2016
, “
Modulating Mechanical Behaviour of 3D-Printed Cartilage-Mimetic PCL Scaffolds: Influence of Molecular Weight and Pore Geometry
,”
Biofabrication
,
8
(
2
), p.
025020
.
5.
You
,
F.
,
Wu
,
X.
, and
Chen
,
X. B.
,
2017
, “
3D Printing of Alginate/Gelatin Hydrogel Scaffolds and Their Mechanical-Property Characterization
,”
Int. J. Polym. Mater. Polym. Biomater.
,
66
(
6
), pp.
299
306
.
6.
Bawolin
,
N. K.
,
Li
,
M. G.
,
Chen
,
X. B.
, and
Zhang
,
W. J.
,
2010
, “
Modeling Material-Degradation-Induced Elastic Property of Tissue Engineering Scaffolds
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111001
.
7.
Bawolin
,
N. K.
,
Zhang
,
W. J.
, and
Chen
,
X. B.
,
2010
, “
A Brief Review of the Modelling of the Time Dependent Mechanical Properties of Tissue Engineering Scaffolds
,”
J. Biomimetics Biomater. Tissue Eng.
,
6
, pp.
19
33
.
8.
Freier
,
T.
,
Kunze
,
C.
,
Nischan
,
C.
,
Kramer
,
S.
,
Sternberg
,
K.
,
Sa
,
M.
,
Hopt
,
U. T.
, and
Schmitz
,
K. P.
,
2002
, “
In Vitro and In Vivo Degradation Studies for Development of a Biodegradable Patch Based on Poly(3-Hydroxybutyrate)
,”
Biomaterials
,
23
(
13
), pp.
2649
2657
.
9.
Kenley
,
R. A.
,
Lee
,
M. O.
,
Mahoney
,
T. R.
, and
Sanders
,
L. M.
,
1987
, “
Poly(Lactide-co-Glycolide) Decomposition Kinetics In Vivo and In Vitro
,”
Macromolecules
,
20
(
10
), pp.
2398
2403
.
10.
Grayson
,
A. C. R.
,
Voskerician
,
G.
,
Lynn
,
A.
,
Anderson
,
J. M.
,
Cima
,
M. J.
, and
Langer
,
R.
,
2004
, “
Differential Degradation Rates In Vivo and In Vitro of Biocompatible Poly(Lactic Acid) and Poly(Glycolic Acid) Homo- and Co-Polymers for a Polymeric Drug-Delivery Microchip
,”
J. Biomater. Sci. Polymer Ed.
,
15
(
10
), pp.
1281
1304
.
11.
Gefen
,
A.
, and
Margulies
,
S. S.
,
2004
, “
Are In Vivo and In Situ Brain Tissues Mechanically Similar?
J. Biomech.
,
37
(
9
), pp.
1339
1352
.
12.
Artzi1
,
N.
,
Oliva
,
N.
,
Puron
,
C.
,
Shitreet
,
S.
,
Artzi
,
S.
,
bon Ramos
,
A.
,
Groothuis
,
A.
,
Sahagian
,
G.
, and
Edelman
,
E. R.
,
2011
, “
In Vivo and In Vitro Tracking of Erosion in Biodegradable Materials Using Non-Invasive Fluorescence Imaging
,”
Nat. Mater.
,
10
(
9
), pp.
704
709
.
13.
Goss
,
B. C.
,
McGee
,
K. P.
,
Ehman
,
E. C.
,
Manduca
,
A.
, and
Ehman
,
R. L.
,
2006
, “
Magnetic Resonance Elastography of the Lung: Technical Feasibility
,”
Magn. Reson. Med.
,
56
(
5
), pp.
1060
1066
.
14.
Zhang
,
Y. S.
,
Cai
,
X.
,
Yao
,
J.
,
Xing
,
W.
,
Wang
,
L. V.
, and
Xia
,
Y.
,
2014
, “
Non-Invasive and In Situ Characterization of the Degradation of Biomaterial Scaffolds by Volumetric Photoacoustic Microscopy
,”
Angew. Chem. Int. Ed.
,
53
(
1
), pp.
184
188
.
15.
Park
,
D. W.
,
Ye
,
S. H.
,
Jiang
,
H. B.
,
Dutta
,
D.
,
Nonaka
,
K.
,
Wagner
,
W. R.
, and
Kim
,
K.
,
2014
, “
In Vivo Monitoring of Structural and Mechanical Changes of Tissue Scaffolds by Multi-Modality Imaging
,”
Biomaterials
,
35
(
27
), pp.
7851
7859
.
16.
Kim
,
K.
,
Jeong
,
C. G.
, and
Hollister
,
S. J.
,
2008
, “
Non-Invasive Monitoring of Tissue Scaffold Degradation Using Ultrasound Elasticity Imaging
,”
Acta Biomater.
,
4
(
4
), pp.
783
790
.
17.
Yu
,
J.
,
Takanari
,
K.
,
Hong
,
Y.
,
Lee
,
K. W.
,
Amoroso
,
N. J.
,
Wang
,
Y.
,
Wagner
,
W. R.
, and
Kim
,
K.
,
2013
, “
Non-Invasive Characterization of Polyurethane-Based Tissue Constructs in a Rat Abdominal Repair Model Using High Frequency Ultrasound Elasticity Imaging
,”
Biomaterials
,
34
(
11
), pp.
2701
2709
.
18.
Dutta
,
D.
,
Lee
,
K. W.
,
Allen
,
R. A.
,
Wang
,
Y.
,
Brigham
,
J. C.
, and
Kim
,
K.
,
2013
, “
Non-Invasive Assessment of Elastic Modulus of Arterial Constructs During Cell Culture Using Ultrasound Elasticity Imaging
,”
Ultrasound Med. Biol.
,
39
(
11
), pp.
2103
2115
.
19.
Niklason
,
L. E.
,
Yeh
,
A. T.
,
Calle
,
E. A.
,
Bai
,
Y. Q.
,
Valentín
,
A.
, and
Humphrey
,
J. D.
,
2010
, “
Enabling Tools for Engineering Collagenous Tissues Integrating Bioreactors, Intravital Imaging, and Biomechanical Modeling
,”
PNAS
,
107
(
8
), pp.
3335
3339
.
20.
Ulum
,
M. F.
,
Arafat
,
A.
,
Noviana
,
D.
,
Yusopa
,
A. H.
,
Nasutiona
,
A. K.
,
Abdul Kadir
,
M. R.
, and
Hermawan
,
H.
,
2014
, “
In Vitro and In Vivo Degradation Evaluation of Novel Iron-Bioceramic Composites for Bone Implant Applications
,”
Mater. Sci. Eng.: C
,
36
, pp.
336
344
.
21.
Jones
,
A. C.
,
Arns
,
C. H.
,
Sheppard
,
A. P.
, and
Hutmacher
,
D. W.
,
2007
, “
Assessment of Bone Ingrowth Into Porous Biomaterials Using MICRO-CT
,”
Biomaterials
,
28
(
15
), pp.
2491
2504
.
22.
Saito
,
E.
,
Suarez-Gonzalez
,
D.
,
Rao
,
R. R.
,
Stegemann
,
J. P.
,
Murphy
,
W. L.
, and
Hollister
,
S. J.
,
2013
, “
Use of Micro-Computed Tomography to Nondestructively Characterize Biomineral Coatings on Solid Freeform Fabricated Poly (L-Lactic Acid) and Poly (e-Caprolactone) Scaffolds In Vitro and In Vivo
,”
Tissue Eng. Part C: Methods
,
19
(
7
), pp.
507
517
.
23.
Langer
,
M.
,
Liu
,
Y.
,
Tortelli
,
F.
,
Cloetens
,
P.
,
Cancedda
,
R.
, and
Peyrin
,
F.
,
2010
, “
Regularized Phase Tomography Enables Study of Mineralized and Unmineralized Tissue in Porous Bone Scaffold
,”
J. Microsc.
,
238
(
3
), pp.
230
239
.
24.
Zehbe
,
R.
,
Riesemeier
,
H.
,
Kirkpatrick
,
C. J.
, and
Brochhausen
,
C.
,
2012
, “
Imaging of Articular Cartilage—Data Matching Using X-Ray Tomography, SEM, FIB Slicing and Conventional Histology
,”
Micron
,
43
(
10
), pp.
1060
1067
.
25.
Rack
,
A.
,
2011
, “
Developments in High-Resolution CT: Studying Bioregeneration by Hard X-Ray Synchrotron-Based Microtomography
,”
Compr. Biomater.
,
3
, pp.
47
62
.
26.
Appel
,
A.
,
Anastasio
,
M. A.
, and
Brey
,
E. M.
,
2011
, “
Potential for Imaging Engineered Tissues With X-Ray Phase Contrast
,”
Tissue Eng. Part B: Reviews
,
17
(
5
), pp.
321
330
.
27.
Zhu
,
N.
,
Chapman
,
D.
,
Cooper
,
D.
,
Schreyer
,
D. J.
, and
Chen
,
X. B.
,
2011
, “
X-Ray Diffraction Enhanced Imaging as a Novel Method to Visualize Low-Density Scaffolds in Soft Tissue Engineering
,”
Tissue Eng. Part C: Methods
,
17
(
11
), pp.
1071
1080
.
28.
Izadifar
,
Z.
,
Honaramooz
,
A.
,
Wiebe
,
S.
,
Belev
,
G.
,
Chen
,
X. B.
, and
Chapman
,
D.
,
2016
, “
Low-Dose Phase-Based X-Ray Imaging Techniques for In Situ Soft Tissue Engineering Assessments
,”
Biomaterials
,
82
, pp.
151
167
.
29.
Olubamiji
,
A. D.
,
Izadifar
,
Z.
,
Zhu
,
N.
,
Chang
,
T. J.
,
Chen
,
X. B.
, and
Eames
,
B. F.
,
2016
, “
Using SR-Inline-PCI-CT to Visualize 3D-Printed Hybrid Constructs for Cartilage Tissue Engineering
,”
J. Synchrotron Radiat.
,
23
(
3
), pp.
802
812
.
30.
Bawolin
,
N. K.
,
Dolovich
,
A. T.
,
Chen
,
X. B.
, and
Zhang
,
W. J.
,
2015
, “
Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling
,”
ASME J. Biomech. Eng.
,
137
(
8
), p.
081004
.
31.
Bawolin
,
N.
, and
Chen
,
X. B.
,
2016
, “
Synchrotron-Based In Situ Characterization of the Scaffold Mass Loss From Erosion Degradation
,”
J. Funct. Biomater.
,
7
(
3
), p.
17
.
32.
Izadifar
,
Z.
,
Chang
,
T. J.
,
Kulyk
,
W.
,
Chen
,
X. B.
, and
Eames
,
B. F.
,
2015
, “
Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering
,”
Tissue Eng. Part C: Methods
,
22
(
3
), pp.
173
188
.
33.
Zhang
,
Z.
,
Kuijer
,
R.
,
Bulstra
,
S. K.
,
Grijpma
,
D. W.
, and
Feijen
,
J.
,
2006
, “
The In Vivo and In Vitro Degradation Behavior of Poly(Trimethylene Carbonate)
,”
Biomaterials
,
27
(
9
), pp.
1741
1748
.
34.
Ibim
,
S. E.
,
Uhrich
,
K. E.
,
Attawia
,
M.
,
Shastri
,
V. R.
,
El-Amin
,
S. F.
,
Bronson
,
R.
,
Langer
,
R.
, and
Laurencin
,
C. T.
,
1998
, “
Preliminary In Vivo Report on the Osteocompatibility of Poly(Anhydride-co-Imides) Evaluated in a Tibial Model
,”
J. Biomed. Mater. Res.
,
43
(
4
), pp.
374
379
.
35.
Ibim
,
S. E.
,
Uhrich
,
K. E.
,
Bronson
,
R.
,
El-Amin
,
S. F.
,
Langer
,
R. S.
, and
Laurencin
,
C. T.
,
1998
, “
Poly(Anhydride-co-Imides): In Vivo Biocompatibility in a Rat Model
,”
Biomaterials
,
19
(
10
), pp.
941
951
.
36.
Guo
,
Q.
, and
Groeninckx
,
G.
,
2001
, “
Crystallization Kinetics Poly(e-Caprolactone) in Miscible Thermosetting Polymer Blends of Epoxy Resin and Poly (ε-Caprolactone)
,”
Polymer
,
42
(
21
), pp.
8647
8655
.
37.
Berger
,
H.
,
Kari
,
S.
,
Gabbert
,
U.
,
Rodríguez-Ramos
,
R.
,
Bravo-Castillero
,
J.
, and
Guinovart-Díaz
,
R.
,
2005
, “
A Comprehensive Numerical Homogenisation Technique for Calculating Effective Coefficients of Uniaxial Piezoelectric Fibre Composites
,”
Mater. Sci. Eng. A
,
412
(
1–2
), pp.
53
60
.
38.
Graves-Morris
,
P. R.
,
Roberts
,
D. E.
, and
Salam
,
A.
,
2000
, “
The Epsilon Algorithm and Related Topics
,”
J. Comput. Appl. Math.
,
122
(
1–2
), pp.
51
80
.
39.
Croarkin
,
C.
, and
Tobias
,
P.
,
2012
,
NIST/SEMATECH e-Handbook of Statistical Methods
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
40.
Lam
,
C. X. F.
,
Savalani
,
M. M.
,
Teoh
,
S. H.
, and
Hutmacher
,
D. W.
,
2008
, “
Dynamics of In Vitro Polymer Degradation of Polycaprolactone-Based Scaffolds: Accelerated Versus Simulated Physiological Conditions
,”
Biomed. Mater.
,
3
(
3
), p.
034108
.
You do not currently have access to this content.