The important factors that affect the arterial wall compliance are the tissue properties of the arterial wall, the in vivo pulsatile pressure, and the prestressed condition of the artery. It is necessary to obtain the load-free geometry for determining the physiological level of prestress in the arterial wall. The previously developed optimization-based inverse algorithm was improved to obtain the load-free geometry and the wall prestress of an idealized tapered femoral artery of a dog under varying arterial wall properties. The compliance of the artery was also evaluated over a range of systemic pressures (72.5–140.7 mmHg), associated blood flows, and artery wall properties using the prestressed arterial geometry. The results showed that the computed load-free outer diameter at the inlet of the tapered artery was 6.7%, 9.0%, and 12% smaller than the corresponding in vivo diameter for the 25% softer, baseline, and 25% stiffer arterial wall properties, respectively. In contrast, the variations in the prestressed geometry and circumferential wall prestress were less than 2% for variable arterial wall properties. The computed compliance at the inlet of the prestressed artery for the baseline arterial wall property was 0.34%, 0.19%, and 0.13% diameter change/mmHg for time-averaged pressures of 72.5, 104.1, and 140.7 mmHg, respectively. However, the variation in compliance due to the change in arterial wall property was less than 6%. The load-free and prestressed geometries of the idealized tapered femoral artery were accurately (error within 1.2% of the in vivo geometry) computed under variable arterial wall properties using the modified inverse algorithm. Based on the blood-arterial wall interaction results, the arterial wall compliance was influenced significantly by the change in average pressure. In contrast, the change in arterial wall property did not influence the arterial wall compliance.

References

References
1.
Fung
,
Y. C.
,
1990
,
Biomechanics
,
Springer
,
New York
.
2.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2003
,
Biomechanics of Soft Tissue in Cardiovascular Systems
,
Springer Science & Business Media
,
New York
.
3.
Van Loon
,
P.
,
1976
, “
Length-Force and Volume-Pressure Relationships of Arteries
,”
Biorheology
,
14
(
4
), pp.
181
201
.
4.
Huang
,
X.
,
Yang
,
C.
,
Yuan
,
C.
,
Liu
,
F.
,
Canton
,
G.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Sicard
,
G. A.
, and
Tang
,
D.
,
2009
, “
Patient-Specific Artery Shrinkage and 3D Zero-Stress State in Multi-Component 3D FSI Models for Carotid Atherosclerotic Plaques Based on In Vivo MRI Data
,”
Mol. Cell. Biomech.
,
6
(
2
), pp.
121
134
.
5.
Gee
,
M.
,
Förster
,
C.
, and
Wall
,
W.
,
2010
, “
A Computational Strategy for Prestressing Patient-Specific Biomechanical Problems Under Finite Deformation
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
(
1
), pp.
52
72
.
6.
Schulze-Bauer
,
C.
,
2003
, “
Determination of Constitutive Equations for Human Arteries From Clinical Data
,”
J. Biomech.
,
36
(
2
), p.
165
.
7.
Holzapfel
,
G.
,
Gasser
,
T.
, and
Ogden
,
R.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
(
1
), pp.
1
48
.
8.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
,
2004
, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
ASME J. Biomech. Eng.
,
126
(
5
), pp.
657
665
.
9.
Chuong
,
C.
,
1986
, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
,
108
(
2
), p.
189
.
10.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Sicard
,
G. A.
,
Pilgram
,
T. K.
, and
Yuan
,
C.
,
2005
, “
Quantifying Effects of Plaque Structure and Material Properties on Stress Distributions in Human Atherosclerotic Plaques Using 3D FSI Models
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1185
1194
.
11.
Roy
,
A. S.
,
Back
,
L. H.
, and
Banerjee
,
R. K.
,
2008
, “
Evaluation of Compliance of Arterial Vessel Using Coupled Fluid Structure Interaction Analysis
,”
Mol. Cell. Biomech.
,
5
(
4
), pp.
229
246
.
12.
Konala
,
B. C.
,
Das
,
A.
, and
Banerjee
,
R. K.
,
2011
, “
Influence of Arterial Wall-Stenosis Compliance on the Coronary Diagnostic Parameters
,”
J. Biomech.
,
44
(
5
), pp.
842
847
.
13.
Raghavan
,
M.
,
Ma
,
B.
, and
Fillinger
,
M. F.
,
2006
, “
Non-Invasive Determination of Zero-Pressure Geometry of Arterial Aneurysms
,”
Ann. Biomed. Eng.
,
34
(
9
), pp.
1414
1419
.
14.
Bols
,
J.
,
Degroote
,
J.
,
Trachet
,
B.
,
Verhegghe
,
B.
,
Segers
,
P.
, and
Vierendeels
,
J.
,
2013
, “
A Computational Method to Assess the In Vivo Stresses and Unloaded Configuration of Patient-Specific Blood Vessels
,”
J. Comput. Appl. Math.
,
246
, pp.
10
17
.
15.
Gee
,
M.
,
Reeps
,
C.
,
Eckstein
,
H.
, and
Wall
,
W.
,
2009
, “
Prestressing in Finite Deformation Abdominal Aortic Aneurysm Simulation
,”
J. Biomech.
,
42
(
11
), pp.
1732
1739
.
16.
Govindjee
,
S.
, and
Mihalic
,
P. A.
,
1996
, “
Computational Methods for Inverse Finite Elastostatics
,”
Comput. Methods Appl. Mech. Eng.
,
136
(
1
), pp.
47
57
.
17.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
,
2007
, “
Computational Method of Inverse Elastostatics for Anisotropic Hyperelastic Solids
,”
Int. J. Numer. Methods Eng.
,
69
(
6
), pp.
1239
1261
.
18.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
,
2008
, “
Inverse Method of Stress Analysis for Cerebral Aneurysms
,”
Biomech. Model. Mechanobiol.
,
7
(
6
), pp.
477
486
.
19.
Das
,
A.
,
Paul
,
A.
,
Taylor
,
M.
, and
Banerjee
,
R. K.
,
2015
, “
Pulsatile Arterial Wall-Blood Flow Interaction With Wall Pre-Stress Computed Using an Inverse Algorithm
,”
Biomed. Eng. Online
,
14
(
Suppl. 1
), p.
S18
.
20.
Jin
,
S.
,
Oshinski
,
J.
, and
Giddens
,
D. P.
,
2003
, “
Effects of Wall Motion and Compliance on Flow Patterns in the Ascending Aorta
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
347
354
.
21.
Bogren
,
H. G.
,
Klipstein
,
R. H.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
,
Underwood
,
S. R.
,
Rees
,
R. S. O.
, and
Longmore
,
D. B.
,
1989
, “
Pulmonary Artery Distensibility and Blood Flow Patterns: A Magnetic Resonance Study of Normal Subjects and of Patients With Pulmonary Arterial Hypertension
,”
Am. Heart J.
,
118
(
5
), pp.
990
999
.
22.
Megerman
,
J.
,
Hasson
,
J. E.
,
Warnock
,
D. F.
,
L'Italien
,
G. J.
, and
Abbott
,
W. M.
,
1986
, “
Noninvasive Measurements of Nonlinear Arterial Elasticity
,”
Am. J. Physiol. Heart Circ. Physiol.
,
250
(
2
), pp.
H181
H188
.
23.
Dobrin
,
P. B.
,
1978
, “
Mechanical Properties of Arteries
,”
Physiol. Rev.
,
58
(
2
), pp.
397
460
.
24.
O'Rourke
,
M.
,
1982
, “
Vascular Impedance in Studies of Arterial and Cardiac Function
,”
Physiol. Rev.
,
62
(
2
), pp.
570
623
.
25.
Banerjee
,
R. K.
,
Back
,
L. H.
, and
Cho
,
Y. I.
,
2000
,
Computational Fluid Dynamics Modeling Techniques Using Finite Element Methods to Predict Arterial Blood Flow
,
CRC Press
,
Boca Raton, FL
.
26.
Ehrlich
,
W.
,
Baer
,
R. W.
,
Bellamy
,
R. F.
, and
Randazzo
,
R.
,
1980
, “
Instantaneous Femoral Artery Pressure-Flow Relations in Supine Anesthetized Dogs and the Effect of Unilateral Elevation of Femoral Venous Pressure
,”
Circ. Res.
,
47
(
1
), pp.
88
98
.
27.
Urzua
,
J.
,
Nunez
,
G.
,
Lema
,
G.
,
Canessa
,
R.
, and
Sacco
,
C.
,
1999
, “
Hemodilution Does not Alter the Aortic-to-Femoral Arterial Pressure Difference in Dogs
,”
J. Clin. Monit. Comput.
,
15
(
7–8
), pp.
429
433
.
28.
Cox
,
R.
,
1975
, “
Pressure Dependence of the Mechanical Properties of Arteries In Vivo
,”
Am. J. Physiol.
,
229
(
5
), pp.
1371
1375
.
29.
Nichols
,
W.
,
O'Rourke
,
M.
, and
Vlachopoulos
,
C.
,
2011
,
McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles
,
CRC Press
,
Boca Raton, FL
.
30.
Attinger
,
F. M. L.
,
1968
, “
Two-Dimensional in-Vitro Studies of Femoral Arterial Walls of the Dog
,”
Circ. Res.
,
22
(
6
), pp.
829
840
.
31.
Bathe
,
K. J.
,
2006
,
Finite Element Procedures
,
Klaus-Jurgen Bathe
,
Watertown, MA
.
32.
Bathe
,
K. J.
,
2002
, “
Theory and Modeling Guide
,” Vol I: ADINA, ADINA R&D, Inc., Watertown, MA.
33.
Bathe
,
K. J.
,
2002
, “
Theory and Modeling Guide
,” Vol II: ADINA-F, ADINA R&D, Inc., Watertown, MA.
34.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel—Part 1: Steady Flows
,”
Biorheology
,
28
(
3–4
), pp.
241
262
.
35.
Hamza
,
L. H.
,
Dang
,
Q.
,
Lu
,
X.
,
Mian
,
A.
,
Molloi
,
S.
, and
Kassab
,
G. S.
,
2003
, “
Effect of Passive Myocardium on the Compliance of Porcine Coronary Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
285
(
2
), pp.
H653
H660
.
36.
Raghavan
,
M.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.
37.
Zhang
,
W.
,
Herrera
,
C.
,
Atluri
,
S. N.
, and
Kassab
,
G. S.
,
2005
, “
The Effect of Longitudinal Pre-Stretch and Radial Constraint on the Stress Distribution in the Vessel Wall: A New Hypothesis
,”
Mech. Chem. Biosyst.
,
2
(
1
), pp.
41
52
.
38.
McDonald
,
D.
,
1955
, “
The Relation of Pulsatile Pressure to Flow in Arteries
,”
J. Physiol.
,
127
(
3
), pp.
533
552
.
39.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.
You do not currently have access to this content.