Contact force imbalance and contact kinematics (i.e., motion of the contact location in each compartment during flexion) of the tibiofemoral joint are both important predictors of a patient's outcome following total knee arthroplasty (TKA). Previous tibial force sensors have limitations in that they either did not determine contact forces and contact locations independently in the medial and lateral compartments or only did so within restricted areas of the tibial insert, which prevented them from thoroughly evaluating contact force imbalance and contact kinematics in vitro. Accordingly, the primary objective of this study was to present the design and verification of an improved tibial force sensor which overcomes these limitations. The improved tibial force sensor consists of a modified tibial baseplate which houses independent medial and lateral arrays of three custom tension–compression transducers each. This sensor is interchangeable with a standard tibial component because it accommodates tibial articular surface inserts with a range of sizes and thicknesses. This sensor was verified by applying known loads at known locations over the entire surface of the tibial insert to determine the errors in the computed contact force and contact location in each compartment. The root-mean-square errors (RMSEs) in contact force are ≤ 6.1 N which is 1.4% of the 450 N full-scale output. The RMSEs in contact location are ≤ 1.6 mm. This improved tibial force sensor overcomes the limitations of the previous sensors and therefore should be useful for in vitro evaluation of new alignment goals, new surgical techniques, and new component designs in TKA.

References

References
1.
Gustke
,
K. A.
,
Golladay
,
G. J.
,
Roche
,
M. W.
,
Jerry
,
G. J.
,
Elson
,
L. C.
, and
Anderson
,
C. R.
,
2014
, “
Increased Satisfaction After Total Knee Replacement Using Sensor-Guided Technology
,”
Bone Jt. J
,
96-B
(
10
), pp.
1333
1338
.
2.
Lutzner
,
J.
,
Kirschner
,
S.
,
Gunther
,
K. P.
, and
Harman
,
M. K.
,
2012
, “
Patients With No Functional Improvement After Total Knee Arthroplasty Show Different Kinematics
,”
Int. Orthop.
,
36
(
9
), pp.
1841
1847
.
3.
Jacobs
,
C. A.
,
Christensen
,
C. P.
, and
Karthikeyan
,
T.
,
2016
, “
Greater Medial Compartment Forces During Total Knee Arthroplasty Associated With Improved Patient Satisfaction and Ability to Navigate Stairs
,”
J. Arthroplasty
,
31
(
9 Suppl.
), pp.
87
90
.
4.
Meneghini
,
R. M.
,
Ziemba-Davis
,
M. M.
,
Lovro
,
L. R.
,
Ireland
,
P. H.
, and
Damer
,
B. M.
,
2016
, “
Can Intraoperative Sensors Determine the ‘Target’ Ligament Balance? Early Outcomes in Total Knee Arthroplasty
,”
J. Arthroplasty
,
31
(10), pp. 2181–2187.
5.
Kretzer
,
J. P.
,
Jakubowitz
,
E.
,
Sonntag
,
R.
,
Hofmann
,
K.
,
Heisel
,
C.
, and
Thomsen
,
M.
,
2010
, “
Effect of Joint Laxity on Polyethylene Wear in Total Knee Replacement
,”
J. Biomech.
,
43
(
6
), pp.
1092
1096
.
6.
Harman
,
M. K.
,
Banks
,
S. A.
, and
Hodge
,
W. A.
,
2001
, “
Polyethylene Damage and Knee Kinematics After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
392
(
11
), pp.
383
393
.
7.
Meccia
,
B.
,
Komistek
,
R. D.
,
Mahfouz
,
M. R.
, and
Dennis
,
D. A.
,
2014
, “
Abnormal Axial Rotations in TKA Contribute to Reduced Weightbearing Flexion
,”
Clin. Orthop. Relat. Res.
,
472
(
1
), pp.
248
253
.
8.
Crottet
,
D.
,
Maeder
,
T.
,
Fritschy
,
D.
,
Bleuler
,
H.
,
Nolte
,
L. P.
, and
Pappas
,
I. P.
,
2005
, “
Development of a Force Amplitude- and Location-Sensing Device Designed to Improve the Ligament Balancing Procedure in TKA
,”
IEEE Trans. Biomed. Eng.
,
52
(
9
), pp.
1609
1611
.
9.
Kaufman
,
K. R.
,
Kovacevic
,
N.
,
Irby
,
S. E.
, and
Colwell
,
C. W.
,
1996
, “
Instrumented Implant for Measuring Tibiofemoral Forces
,”
J. Biomech.
,
29
(
5
), pp.
667
671
.
10.
Nicholls
,
R. L.
,
Schirm
,
A. C.
,
Jeffcote
,
B. O.
, and
Kuster
,
M. S.
,
2007
, “
Tibiofemoral Force Following Total Knee Arthroplasty: Comparison of Four Prosthesis Designs In Vitro
,”
J. Orthop. Res.
,
25
(
11
), pp.
1506
1512
.
11.
Singerman
,
R.
,
Berilla
,
J.
,
Archdeacon
,
M.
, and
Peyser
,
A.
,
1999
, “
In Vitro Forces in the Normal and Cruciate-Deficient Knee During Simulated Squatting Motion
,”
ASME J. Biomech. Eng.
,
121
(
2
), pp.
234
242
.
12.
Camarata
,
D. A.
,
2014
, “
Soft Tissue Balance in Total Knee Arthroplasty With a Force Sensor
,”
Orthop. Clin. North Am.
,
45
(
2
), pp.
175
184
.
13.
Gustke
,
K. A.
,
Golladay
,
G. J.
,
Roche
,
M. W.
,
Elson
,
L. C.
, and
Anderson
,
C. R.
,
2014
, “
A New Method for Defining Balance: Promising Short-Term Clinical Outcomes of Sensor-Guided TKA
,”
J. Arthroplasty
,
29
(
5
), pp.
955
960
.
14.
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2007
, “
Design, Calibration and Pre-Clinical Testing of an Instrumented Tibial Tray
,”
J. Biomech.
,
40
(
Suppl. 1
), pp.
S4
10
.
15.
Kirking
,
B.
,
Krevolin
,
J.
,
Townsend
,
C.
,
Colwell
,
C. W.
, Jr.
, and
D'Lima
,
D. D.
,
2006
, “
A Multiaxial Force-Sensing Implantable Tibial Prosthesis
,”
J. Biomech.
,
39
(
9
), pp.
1744
1751
.
16.
Ardestani
,
M. M.
,
Moazen
,
M.
, and
Jin
,
Z.
,
2015
, “
Contribution of Geometric Design Parameters to Knee Implant Performance: Conflicting Impact of Conformity on Kinematics and Contact Mechanics
,”
Knee
,
22
(
3
), pp.
217
224
.
17.
Varadarajan
,
K. M.
,
Zumbrunn
,
T.
,
Rubash
,
H. E.
,
Malchau
,
H.
,
Li
,
G.
, and
Muratoglu
,
O. K.
,
2015
, “
Cruciate Retaining Implant With Biomimetic Articular Surface to Reproduce Activity Dependent Kinematics of the Normal Knee
,”
J. Arthroplasty
,
30
(
12
), pp.
2149
2153
.
18.
Varadarajan
,
K. M.
,
Zumbrunn
,
T.
,
Rubash
,
H. E.
,
Malchau
,
H.
,
Muratoglu
,
O. K.
, and
Li
,
G.
,
2015
, “
Reverse Engineering Nature to Design Biomimetic Total Knee Implants
,”
J. Knee Surg.
,
28
(
5
), pp.
363
369
.
19.
Amiri
,
S.
,
Cooke
,
D.
,
Kim
,
I. Y.
, and
Wyss
,
U.
,
2006
, “
Mechanics of the Passive Knee Joint—Part 1: The Role of the Tibial Articular Surfaces in Guiding the Passive Motion
,”
Proc. Inst. Mech. Eng., Part H
,
220
(
8
), pp.
813
822
.
20.
Onishi
,
Y.
,
Hino
,
K.
,
Watanabe
,
S.
,
Watamori
,
K.
,
Kutsuna
,
T.
, and
Miura
,
H.
,
2016
, “
The Influence of Tibial Resection on the PCL in PCL-Retaining Total Knee Arthroplasty: A Clinical and Cadaveric Study
,”
J. Orthop. Sci.
,
21
(6), pp. 798–803.
21.
Jawhar
,
A.
,
Kadavkolan
,
A. S.
,
Wasnik
,
S.
,
Scharf
,
H. P.
, and
Roehl
,
H.
,
2016
, “
Preservation of the PCL When Performing Cruciate-Retaining TKA: Is the Tibial Tuberosity a Reliable Predictor of the PCL Footprint Location?
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
24
(
1
), pp.
58
63
.
22.
Sessa
,
P.
,
Fioravanti
,
G.
,
Giannicola
,
G.
, and
Cinotti
,
G.
,
2015
, “
The Risk of Sacrificing the PCL in Cruciate Retaining Total Knee Arthroplasty and the Relationship to the Sagittal Inclination of the Tibial Plateau
,”
Knee
,
22
(
1
), pp.
51
55
.
23.
Pinskerova
,
V.
,
Johal
,
P.
,
Nakagawa
,
S.
,
Sosna
,
A.
,
Williams
,
A.
,
Gedroyc
,
W.
, and
Freeman
,
M. A.
,
2004
, “
Does the Femur Roll-Back With Flexion?
,”
J. Bone Jt. Surg., Br.
,
86
(
6
), pp.
925
931
.
24.
Sharma
,
A.
,
Dennis
,
D. A.
,
Zingde
,
S. M.
,
Mahfouz
,
M. R.
, and
Komistek
,
R. D.
,
2014
, “
Femoral Condylar Contact Points Start and Remain Posterior in High Flexing Patients
,”
J. Arthroplasty
,
29
(
5
), pp.
945
949
.
25.
Wasielewski
,
R. C.
,
Galante
,
J. O.
,
Leighty
,
R. M.
,
Natarajan
,
R. N.
, and
Rosenberg
,
A. G.
,
1994
, “
Wear Patterns on Retrieved Polyethylene Tibial Inserts and Their Relationship to Technical Considerations During Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
299
(
2
), pp.
31
43
.
26.
Stiehl
,
J. B.
,
Dennis
,
D. A.
,
Komistek
,
R. D.
, and
Keblish
,
P. A.
,
1997
, “
In Vivo Kinematic Analysis of a Mobile Bearing Total Knee Prosthesis
,”
Clin. Orthop. Relat. Res.
,
345
(
12
), pp.
60
66
.
27.
ASTM
,
2013
, “
Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
,” American Standards for Testing and Materials, West Conshohocken, PA, Standard No. E177−13.
28.
ISO,
1994
, “
Accuray (Trueness and Precision) of Measurement Methods and Results
,” International Standards Organization, Geneva, Switzerland, Standard No. ISO 5725-1.
29.
Bach
,
J. M.
, and
Hull
,
M. L.
,
1995
, “
A New Load Application System for In Vitro Study of Ligamentous Injuries to the Human Knee Joint
,”
ASME J. Biomech. Eng.
,
117
(
4
), pp.
373
382
.
30.
Roth
,
J. D.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2015
, “
The Limits of Passive Motion are Variable Between and Unrelated Within Normal Tibiofemoral Joints
,”
J. Orthop. Res.
,
33
(
11
), pp.
1594
1602
.
31.
Markolf
,
K. L.
,
Gorek
,
J. F.
,
Kabo
,
J. M.
, and
Shapiro
,
M. S.
,
1990
, “
Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament. An In Vitro Study Performed With a New Experimental Technique
,”
J. Bone Jt. Surg.
, Am.,
72
(
4
), pp.
557
567
.
32.
Merican
,
A. M.
,
Ghosh
,
K. M.
,
Deehan
,
D. J.
, and
Amis
,
A. A.
,
2009
, “
The Transpatellar Approach for the Knee in the Laboratory
,”
J. Orthop. Res.
,
27
(
3
), pp.
330
334
.
33.
Roth
,
J. D.
,
2016
, “
How Well Does Kinematically Aligned Total Knee Arthroplasty Prevent Clinically Important Changes in Passive Knee Function? An In Vitro Biomechanical Study of Tibiofemoral Laxities and Contact
,”
Dissertation
, University of California, Davis, CA.
34.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.
35.
Ghosh
,
K. M.
,
Merican
,
A. M.
,
Iranpour
,
F.
,
Deehan
,
D. J.
, and
Amis
,
A. A.
,
2012
, “
Length-Change Patterns of the Collateral Ligaments After Total Knee Arthroplasty
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
20
(
7
), pp.
1349
1356
.
36.
Park
,
S. E.
,
DeFrate
,
L. E.
,
Suggs
,
J. F.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2006
, “
Erratum to ‘the Change in Length of the Medial and Lateral Collateral Ligaments During In Vivo Knee Flexion’
,”
Knee
,
13
(
1
), pp.
77
82
.
37.
Roth
,
J. D.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2015
, “
Native Knee Laxities at 0 deg, 45 deg, and 90 deg of Flexion and Their Relationship to the Goal of the Gap-Balancing Alignment Method of Total Knee Arthroplasty
,”
J. Bone Jt. Surg.
, Am.,
97
(
20
), pp.
1678
1684
.
38.
Wang
,
A.
,
Stark
,
C.
, and
Dumbleton
,
J. H.
,
1996
, “
Mechanistic and Morphological Origins of Ultra-High Molecular Weight Polyethylene Wear Debris in Total Joint Replacement Prostheses
,”
Proc. Inst. Mech. Eng., Part H
,
210
(
3
), pp.
141
155
.
39.
McEwen
,
H. M.
,
Barnett
,
P. I.
,
Bell
,
C. J.
,
Farrar
,
R.
,
Auger
,
D. D.
,
Stone
,
M. H.
, and
Fisher
,
J.
,
2005
, “
The Influence of Design, Materials and Kinematics on the In Vitro Wear of Total Knee Replacements
,”
J. Biomech.
,
38
(
2
), pp.
357
365
.
40.
McGloughlin
,
T. M.
, and
Kavanagh
,
A. G.
,
2000
, “
Wear of Ultra-High Molecular Weight Polyethylene (UHMWPE) in Total Knee Prostheses: A Review of Key Influences
,”
Proc. Inst. Mech. Eng., Part H
,
214
(
4
), pp.
349
359
.
41.
Matsumoto
,
T.
,
Muratsu
,
H.
,
Kubo
,
S.
,
Matsushita
,
T.
,
Kurosaka
,
M.
, and
Kuroda
,
R.
,
2011
, “
Soft Tissue Tension in Cruciate-Retaining and Posterior-Stabilized Total Knee Arthroplasty
,”
J. Arthroplasty
,
26
(
5
), pp.
788
795
.
42.
Asano
,
H.
,
Hoshino
,
A.
, and
Wilton
,
T. J.
,
2004
, “
Soft-Tissue Tension Total Knee Arthroplasty
,”
J. Arthroplasty
,
19
(
5
), pp.
558
561
.
43.
Meere
,
P. A.
,
Schneider
,
S. M.
, and
Walker
,
P. S.
,
2016
, “
Accuracy of Balancing at Total Knee Surgery Using an Instrumented Tibial Trial
,”
J. Arthroplasty
,
31
(
9
), pp.
1938
1942
.
44.
Schnaser
,
E.
,
Lee
,
Y. Y.
,
Boettner
,
F.
, and
Valle
,
A. G. D.
,
2015
, “
The Position of the Patella and Extensor Mechanism Affects Intraoperative Compartmental Loads During Total Knee Arthroplasty: A Pilot Study Using Intraoperative Sensing to Guide Soft Tissue Balance
,”
J. Arthroplasty
,
30
(
8
), pp.
1348
1353
.
45.
Walker
,
P. S.
,
Meere
,
P. A.
, and
Bell
,
C. P.
,
2014
, “
Effects of Surgical Variables in Balancing of Total Knee Replacements Using an Instrumented Tibial Trial
,”
Knee
,
21
(
1
), pp.
156
161
.
You do not currently have access to this content.