Abnormalities of blood cholesterol concentration are associated with increased risks for vascular disease, especially heart attacks and strokes. As one of the main lipid components of plasma membrane in all mammalian cells, cholesterol has a major impact on the mechanical properties of the membrane of endothelial cells. Although the effect of cholesterol depletion on cell mechanical properties has been studied, no results yet have been reported on quantitative investigation of cholesterol repletion effect. In this study, the cholesterol repletion effect on the nanomechanical properties of human umbilical vein endothelial cell (EA.hy926) was studied using a control-based atomic force microscope (AFM) nanomechanical measurement protocol. The viscoelasticity of EA.hy926 cells were measured over a large frequency range (0.1–100 Hz) using both constant-rate excitation force with different loading rates and a broadband excitation force. The viscoelasticity oscillation of the cell membranes under the cholesterol effect was also monitored in real-time. The experiment results showed that under the effect of cholesterol repletion, both the Young's modulus and the complex modulus of EA.hy926 cell were increased over 30%, respectively, and moreover, the amplitudes of both the elasticity oscillation and the viscosity oscillation at a period of around 200 s were increased over 70%, respectively. Therefore, this work is among the first to investigate the mechanical properties, particularly, the broadband viscoelasticity variations of EA.hy926 cells under cholesterol repletion treatment. The results revealed that cholesterol repletion may reinforce the coupling of F-actin to plasma membrane by increasing actin stability, and the cholesterol might have modified the submembrane cytoskeletal organization of EA.hy926 cell by causing the involvement of the motor protein nonmuscle myosin II.

References

References
1.
Yeagle
,
P. L.
,
1985
, “
Cholesterol and the Cell Membrane
,”
Biochim. Biophys. Acta (BBA)
,
822
(
3
), pp.
267
287
.
2.
Byfield
,
F. J.
,
Aranda-Espinoza
,
H.
,
Romanenko
,
V. G.
,
Rothblat
,
G. H.
, and
Levitan
,
I.
,
2004
, “
Cholesterol Depletion Increases Membrane Stiffness of Aortic Endothelial Cells
,”
Biophys. J.
,
87
(
5
), pp.
3336
3343
.
3.
Sato
,
M.
,
Theret
,
D.
,
Ohshima
,
N.
,
Nerem
,
R.
, and
Wheeler
,
L.
,
1990
, “
Application of the Micropipette Technique to the Measurement of Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties
,”
ASME J. Biomech. Eng.
,
112
(
3
), pp.
263
268
.
4.
Zhang
,
G.
,
Long
,
M.
,
Wu
,
Z.-Z.
, and
Yu
,
W.-Q.
,
2002
, “
Mechanical Properties of Hepatocellular Carcinoma Cells
,”
World J. Gastroenterol.
,
8
(
2
), pp.
243
246
.https://www.ncbi.nlm.nih.gov/pubmed/11925600
5.
Xu
,
X.
, and
London
,
E.
,
2000
, “
The Effect of Sterol Structure on Membrane Lipid Domains Reveals How Cholesterol Can Induce Lipid Domain Formation
,”
Biochemistry
,
39
(
5
), pp.
843
849
.
6.
Needham
,
D.
, and
Nunn
,
R. S.
,
1990
, “
Elastic Deformation and Failure of Lipid Bilayer Membranes Containing Cholesterol
,”
Biophys. J.
,
58
(
4
), pp.
997
1009
.
7.
Norman
,
L. L.
,
Oetama
,
R. J.
,
Dembo
,
M.
,
Byfield
,
F.
,
Hammer
,
D. A.
,
Levitan
,
I.
, and
Aranda-Espinoza
,
H.
,
2010
, “
Modification of Cellular Cholesterol Content Affects Traction Force, Adhesion and Cell Spreading
,”
Cell. Mol. Bioeng.
,
3
(
2
), pp.
151
162
.
8.
Ren
,
J.
,
Yu
,
S.
,
Gao
,
N.
, and
Zou
,
Q.
,
2013
, “
Indentation Quantification for In-Liquid Nanomechanical Measurement of Soft Material Using an Atomic Force Microscope: Rate-Dependent Elastic Modulus of Live Cells
,”
Phys. Rev. E
,
88
(
5
), p.
052711
.
9.
Zou
,
Q.
, and
Ren
,
J.
, 2015, “
Method and Apparatus for Nanomechanical Measurement Using an Atomic Force Microscope
,” U.S. Patent No. 8973161.
10.
Li
,
Q.
,
Lee
,
G.
,
Ong
,
C.
, and
Lim
,
C.
,
2008
, “
AFM Indentation Study of Breast Cancer Cells
,”
Biochem. Biophys. Res. Commun.
,
374
(
4
), pp.
609
613
.
11.
Sen
,
S.
,
Subramanian
,
S.
, and
Discher
,
D. E.
,
2005
, “
Indentation and Adhesive Probing of a Cell Membrane With AFM: Theoretical Model and Experiments
,”
Biophys. J.
,
89
(
5
), pp.
3203
3213
.
12.
Cooke
,
B.
,
Mohandas
,
N.
, and
Coppel
,
R. L.
,
2001
, “
The Malaria-Infected Red Blood Cell: Structural and Functional Changes
,”
Adv. Parasitol.
,
50
, pp.
1
86
.
13.
Butt
,
H.
,
Cappella
,
B.
, and
Kappl
,
M.
,
2005
, “
Force Measurements With the Atomic Force Microscope: Technique, Interpretation and Applications
,”
Surf. Sci. Rep.
,
59
(1–6), pp.
1
152
.
14.
Mahaffy
,
R.
,
Park
,
S.
,
Gerde
,
E.
,
Käs
,
J.
, and
Shih
,
C.
,
2004
, “
Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy
,”
Biophys. J.
,
86
(
3
), pp.
1777
1793
.
15.
Ren
,
J.
, and
Zou
,
Q.
,
2014
, “
A Control-Based Approach to Accurate Nanoindentation Quantification in Broadband Nanomechanical Measurement Using Scanning Probe Microscope
,”
IEEE Trans. Nanotechnol.
,
13
(
1
), pp.
46
54
.
16.
Ren
,
J.
,
Mousavi
,
A.
,
Li
,
X.
,
Zou
,
Q.
,
Erina
,
N.
, and
Su
,
C.
,
2013
, “
Enhanced Measurement of Broadband Nanomechanical Property of Polymers Using Atomic Force Microscope
,”
Appl. Phys. Lett.
,
102
(
18
), p.
183116
.
17.
Kim
,
K.
, and
Zou
,
Q.
,
2013
, “
A Modeling-Free Inversion-Based Iterative Feedforward Control for Precision Output Tracking of Linear Time-Invariant Systems
,”
IEEE Trans. Mechatronics
,
18
(
6
), pp.
1767
1777
.
18.
Schillers
,
H.
,
Wälte
,
M.
,
Urbanova
,
K.
, and
Oberleithner
,
H.
,
2010
, “
Real-Time Monitoring of Cell Elasticity Reveals Oscillating Myosin Activity
,”
Biophys. J.
,
99
(
11
), pp.
3639
3646
.
19.
Greenwood
,
J.
, and
Johnson
,
K.
,
2006
, “
Oscillatory Loading of a Viscoelastic Adhesive Contact
,”
J. Colloid Interface Sci.
,
296
(
1
), pp.
284
291
.
20.
Wahl
,
K. J.
,
Asif
,
S. A.
,
Greenwood
,
J. A.
, and
Johnson
,
K. L.
,
2006
, “
Oscillating Adhesive Contacts Between Micron-Scale Tips and Compliant Polymers
,”
J. Colloid Interface Sci.
,
296
(
1
), pp.
178
188
.
21.
Alcaraz
,
J.
,
Buscemi
,
L.
,
Grabulosa
,
M.
,
Trepat
,
X.
,
Fabry
,
B.
,
Farré
,
R.
, and
Navajas
,
D.
,
2003
, “
Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy
,”
Biophys. J.
,
84
(
3
), pp.
2071
2079
.
22.
Smith
,
B.
,
Tolloczko
,
B.
,
Martin
,
J.
, and
Grütter
,
P.
,
2005
, “
Probing the Viscoelastic Behavior of Cultured Airway Smooth Muscle Cells With Atomic Force Microscopy: Stiffening Induced by Contractile Agonist
,”
Biophys. J.
,
88
(
4
), pp.
2994
3007
.
23.
Alberts
,
B.
,
Bray
,
D.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Watson
,
J. D.
,
2002
,
Molecular Biology of the Cell
,
4th ed.
,
Garland
,
New York
.
You do not currently have access to this content.