Three-dimensional (3D) finite element (FE) models are commonly used to analyze the mechanical behavior of the bone under different conditions (i.e., before and after arthroplasty). They can provide detailed information but they are numerically expensive and this limits their use in cases where large or numerous simulations are required. On the other hand, 2D models show less computational cost, but the precision of results depends on the approach used for the simplification. Two main questions arise: Are the 3D results adequately represented by a 2D section of the model? Which approach should be used to build a 2D model that provides reliable results compared to the 3D model? In this paper, we first evaluate if the stem symmetry plane used for generating the 2D models of bone-implant systems adequately represents the results of the full 3D model for stair climbing activity. Then, we explore three different approaches that have been used in the past for creating 2D models: (1) without side-plate (WOSP), (2) with variable thickness side-plate and constant cortical thickness (SPCT), and (3) with variable thickness side-plate and variable cortical thickness (SPVT). From the different approaches investigated, a 2D model including a side-plate best represents the results obtained with the full 3D model with much less computational cost. The side-plate needs to have variable thickness, while the cortical bone thickness can be kept constant.

References

References
1.
Reimeringer
,
M.
,
Nuño
,
N.
,
Desmarais-Trépanier
,
C.
,
Lavigne
,
M.
, and
Vendittoli
,
P. A.
,
2013
, “
The Influence of Uncemented Femoral Stem Length and Design on Its Primary Stability: A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
11
), pp.
1221
1231
.
2.
Reimeringer
,
M.
, and
Nuño
,
N.
,
2014
, “
Effect of Femoral Mechanical Properties on Primary Stability of Cementless Total Hip Arthroplasty: A Finite Element Analysis
,”
Adv. Biomech. Appl.
,
1
(
3
), pp.
187
210
.
3.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Slooff
,
T. J.
,
1987
, “
Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis
,”
J. Biomech.
,
20
(
11–12
), pp.
1135
1150
.
4.
Doblaré
,
M.
, and
García
,
J. M.
,
2001
, “
Application of an Anisotropic Bone-Remodelling Model Based on a Damage-Repair Theory to the Analysis of the Proximal Femur Before and After Total Hip Replacement
,”
J. Biomech.
,
34
(
9
), pp.
1157
1170
.
5.
Chanda
,
S.
,
Gupta
,
S.
, and
Pratihar
,
D. K.
,
2015
, “
A Genetic Algorithm Based Multi-Objective Shape Optimization Scheme for Cementless Femoral Implant
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
034502
.
6.
Pal
,
B.
,
Gupta
,
S.
, and
New
,
A. M.
,
2009
, “
A Numerical Study of Failure Mechanisms in the Cemented Resurfaced Femur: Effects of Interface Characteristics and Bone Remodelling
,”
Proc. Inst. Mech. Eng. H
,
223
(
4
), pp.
471
484
.
7.
Arabnejad Khanoki
,
S.
, and
Pasini
,
D.
,
2012
, “
Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants With Functionally Graded Cellular Material
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031004
.
8.
Tomaszewski
,
P. K.
,
Verdonschot
,
N.
,
Bulstra
,
S. K.
, and
Verkerke
,
G. J.
,
2010
, “
A Comparative Finite-Element Analysis of Bone Failure and Load Transfer of Osseointegrated Prostheses Fixations
,”
Ann. Biomed. Eng.
,
38
(
7
), pp.
2418
2427
.
9.
Verdonschot
,
N.
, and
Huiskes
,
R.
,
1991
, “
FEM Analyses of Hip Prostheses: Validity of the 2D Side-Plate Model and the Effects of Torsion
,”
J. Biomech.
,
24
(
6
), p.
482
.
10.
Weinans
,
H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1992
, “
Effects of Material Properties of Femoral Hip Components on Bone Remodeling
,”
J. Orthopaed. Res.
,
10
(
6
), pp.
845
853
.
11.
Fernandes
,
P. R.
,
Folgado
,
J.
, and
Ruben
,
R. B.
,
2004
, “
Shape Optimization of a Cementless Hip Stem for a Minimum of Interface Stress and Displacement
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
1
), pp.
51
61
.
12.
Kuiper
,
J. H.
, and
Huiskes
,
R.
,
1992
, “
Numerical Optimization of Hip-Prosthetic Stem Material
,”
Recent Advances in Computer Methods in Biomechanics and Biomedical Engineering
,
J.
Middleton
,
G. N.
Pande
, and
K. R.
Williams
, eds.,
Books and Journals International
,
Swansea, UK
, pp.
76
84
.
13.
Hedia
,
H. S.
,
Shabara
,
M.
,
El-Midany
,
T. T.
, and
Fouda
,
N.
,
2006
, “
Improved Design of Cementless Hip Stems Using Two-Dimensional Functionally Graded Materials
,”
J. Biomed. Mater. Res. B Appl. Biomater.
,
79
(
1
), pp.
42
49
.
14.
Fouda
,
N.
,
2014
, “
Horizontal Functionally Graded Material Coating of Cementless Hip Prosthesis
,”
Trends Biomater. Artif. Organs
,
28
(
2
), pp.
58
64
.
15.
Helgasson
,
B.
,
Perilli
,
E.
,
Schileo
,
E.
,
Taddei
,
F.
,
Brynjolfsson
,
S.
, and
Viceconti
,
M.
,
2008
, “
Mathematical Relationships Between Bone Density and Material Properties: A Literature Review
,”
Clin. Biomech.
,
23
(
2
), pp.
135
146
.
16.
Heller
,
M. O.
,
Bergmann
,
G.
,
Kassi
,
J. P.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
,
2005
, “
Determination of Muscle Loading at the Hip Joint for Use in Pre-Clinical Testing
,”
J. Biomech.
,
38
(
5
), pp.
1155
1163
.
17.
Khanoki
,
S. A.
, and
Pasini
,
D.
,
2013
, “
The Fatigue Design of a Bone Preserving Hip Implant With Functionally Graded Cellular Material
,”
ASME J. Med. Devices
,
7
(
2
), p.
020907
.
18.
Taddei
,
F.
,
Cristofolini
,
L.
,
Martelli
,
S.
,
Gill
,
H. S.
, and
Viceconti
,
M.
,
2006
, “
Subject-Specific Finite Element Models of Long Bones: An In Vitro Evaluation of the Overall Accuracy
,”
J. Biomech.
,
39
(
13
), pp.
2457
2467
.
19.
Andreaus
,
U.
,
Colloca
,
M.
, and
Toscano
,
A.
,
2008
, “
Mechanical Behaviour of a Prosthetized Human Femur: A Comparative Analysis Between Walking and Stair Climbing by Using the Finite Element Method
,”
Biophys. Bioeng. Lett.
,
1
(
3
), pp.
1
15
.
20.
Kowalczyk
,
P.
,
2001
, “
Design Optimization of Cementless Femoral Hip Prostheses Using Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
396
402
.
You do not currently have access to this content.