Knowledge of spinal loads in neighboring disks after interbody fusion plays an important role in the clinical decision of this treatment as well as in the elucidation of its effect. However, controversial findings are still noted in the literature. Moreover, there are no existing models for efficient prediction of intervertebral disk stresses within annulus fibrosus (AF) and nucleus pulposus (NP) regions. In this present study, a new hybrid rigid-deformable modeling workflow was established to quantify the mechanical stress behaviors within AF and NP regions of the L1–2, L2–3, and L4–5 disks after interbody fusion at L3–4 level. The changes in spinal loads were compared with results of the intact model without interbody fusion. The fusion outcomes revealed maximal stress changes (10%) in AF region of L1–2 disk and in NP region of L2–3 disk. The minimal stress change (1%) is noted at the NP region of the L1–2 disk. The validation of simulation outcomes of fused and intact lumbar spine models against those of other computational models and in vivo measurements showed good agreements. Thus, this present study may be used as a novel design guideline for a specific implant and surgical scenario of the lumbar spine disorders.

References

References
1.
Nachemson
,
A.
,
1976
, “
The Lumbar Spine: An Orthopaedic Challenge
,”
Spine
,
1
(
1
), pp.
59
71
.
2.
Dolphens
,
M.
,
Vansteelandt
,
S.
,
Cagnie
,
B.
,
Vleeming
,
A.
,
Nijs
,
J.
,
Vanderstraeten
,
G.
, and
Danneels
,
L.
,
2016
, “
Multivariable Modeling of Factors Associated With Spinal Pain in Young Adolescence
,”
Eur. Spine J.
,
25
(9), pp. 2809–2821.
3.
Faour
,
M.
,
Anderson
,
J. T.
,
Haas
,
A. R.
,
Percy
,
R.
,
Woods
,
S. T.
,
Ahn
,
U. M.
, and
Ahn
,
N. U.
,
2016
, “
Return to Work Rates After Single-Level Cervical Fusion for Degenerative Disc Disease Compared With Fusion for Radiculopathy in a Workers' Compensation Setting
,”
Spine
,
41
(
14
), pp.
1160
1166
.
4.
Erbulut
,
D. U.
,
Kiapour
,
A.
,
Oktenoglu
,
T.
,
Ozer
,
A. F.
, and
Goel
,
V. K.
,
2014
, “
A Computational Biomechanical Investigation of Posterior Dynamic Instrumentation: Combination of Dynamic Rod and Hinged (Dynamic) Screw
,”
ASME J. Biomech. Eng.
,
136
(
5
), p.
051007
.
5.
Gornet
,
M. F.
,
Chan
,
F. W.
,
Coleman
,
J. C.
,
Murrell
,
B.
,
Nockels
,
R. P.
,
Taylor
,
B. A.
,
Lanman
,
T. H.
, and
Ochoa
,
J. A.
,
2011
, “
Biomechanical Assessment of a PEEK Rod System for Semi-Rigid Fixation of Lumbar Fusion Constructs
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081009
.
6.
Lee
,
K. K.
,
Teo
,
E. C.
,
Fuss
,
F. K.
,
Vanneuville
,
V.
,
Qiu
,
T. X.
,
Ng
,
H. W.
,
Yang
,
K.
, and
Sabitzer
,
R. J.
,
2004
, “
Finite-Element Analysis for Lumbar Interbody Fusion Under Axial Loading
,”
IEEE Trans. Biomed. Eng.
,
51
(
3
), pp.
393
400
.
7.
Li
,
J.
,
Shang
,
J.
,
Zhou
,
Y.
,
Li
,
C.
, and
Liu
,
H.
,
2015
, “
Finite Element Analysis of a New Pedicle Screw-Plate System for Minimally Invasive Transforaminal Lumbar Interbody Fusion
,”
PLoS One
,
10
(
12
), p.
e0144637
.
8.
Tanenbaum
,
J. E.
,
Miller
,
J. A.
,
Alentado
,
V. J.
,
Lubelski
,
D.
,
Rosenbaum
,
B. P.
,
Benzel
,
E. C.
, and
Mroz
,
T. E.
,
2016
, “
Insurance Status and Reportable Quality Metrics in the Cervical Spine Fusion Population
,”
Spine J.
,
17
(
1
), pp.
62
69
.
9.
Agarwal
,
A.
,
Palepu
,
V.
,
Agarwal
,
A. K.
,
Goel
,
V. K.
,
Yildirim
,
E. D.
,
2013
, “
Biomechanical Evaluation of an Endplate-Conformed Polycaprolactone-Hydroxyapatite Intervertebral Fusion Graft and Its Comparison With a Typical Nonconformed Cortical Graft
,”
ASME J. Biomech. Eng.
,
135
(
6
), p.
061005
.
10.
Jaumard
,
N. V.
,
Welch
,
W. C.
, and
Winkelstein
,
B. A.
,
2011
, “
Spinal Facet Joint Biomechanics and Mechanotransduction in Normal, Injury and Degenerative Conditions
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071010
.
11.
Erbulut
,
D. U.
,
Zafarparandeh
,
I.
,
Hassan
,
C. R.
,
Lazoglu
,
I.
, and
Ozer
,
A. F.
,
2015
, “
Determination of the Biomechanical Effect of an Interspinous Process Device on Implanted and Adjacent Lumbar Spinal Segments Using a Hybrid Testing Protocol: A Finite-Element Study
,”
J. Neurosurg
, Spine,
23
(
2
), pp.
200
208
.
12.
Ma
,
J.
,
Jia
,
H.
,
Ma
,
X.
,
Xu
,
W.
,
Yu
,
J.
,
Feng
,
R.
,
Wang
,
J.
,
Xing
,
D.
,
Wang
,
Y.
,
Zhu
,
S.
,
Yang
,
Y.
,
Chen
,
Y.
, and
Ma
,
B.
,
2014
, “
Evaluation of the Stress Distribution Change at the Adjacent Facet Joints After Lumbar Fusion Surgery: A Biomechanical Study
,”
Proc. Inst. Mech. Eng. H
,
228
(
7
), pp.
665
673
.
13.
Xiao
,
Z.
,
Wang
,
L.
,
Gong
,
H.
, and
Zhu
,
D.
,
2012
, “
Biomechanical Evaluation of Three Surgical Scenarios of Posterior Lumbar Interbody Fusion by Finite Element Analysis
,”
Biomed. Eng. Online
,
11
(
1
), p.
31
.
14.
Tchako
,
A.
, and
Sadegh
,
A. M.
,
2009
, “
Stress Changes in Intervertebral Discs of the Cervical Spine Due to Partial Discectomies and Fusion
,”
ASME J. Biomech. Eng.
,
131
(
5
), p.
051013
.
15.
Yu
,
S. W.
,
Yang
,
S. C.
,
Ma
,
C. H.
,
Wu
,
C. H.
,
Yen
,
C. Y.
, and
Tu
,
Y. K.
,
2012
, “
Comparison of Dynesys Posterior Stabilization and Posterior Lumbar Interbody Fusion for Spinal Stenosis L4L5
,”
Acta Orthop. Belg
,
78
(2), pp.
230
239
.http://www.actaorthopaedica.be/acta/article.asp?lang=en&navid=244&id=15237&mod=Act
16.
Stoll
,
T. M.
,
Dubois
,
G.
, and
Schwarzenbach
,
O.
,
2002
, “
The Dynamic Neutralization System for the Spine: A Multi-Center Study of a Novel Non-Fusion System
,”
Eur. Spine J.
,
11
(Suppl. 2), pp.
S170
S178
.
17.
Patel
,
S. S.
,
Aruni
,
W.
,
Inceoglu
,
S.
,
Akpolat
,
Y. T.
,
Botimer
,
G. D.
,
Cheng
,
W. K.
, and
Danisa
,
O. A.
,
2016
, “
A Comparison of Staphylococcus aureus Biofilm Formation on Cobalt-Chrome and Titanium-Alloy Spinal Implants
,”
J. Clin. Neurosci.
,
31
, pp.
219
223
.
18.
Bisschop
,
A.
, and
van Tulder
,
M. W.
,
2016
, “
Market Approval Processes for New Types of Spinal Devices: Challenges and Recommendations for Improvement
,”
Eur. Spine J.
,
25
(
9
), pp.
2993
3003
.
19.
Dreischarf
,
M.
,
Shirazi-Adl
,
A.
,
Arjmand
,
N.
,
Rohlmann
,
A.
, and
Schmidt
,
H.
,
2016
, “
Estimation of Loads on Human Lumbar Spine: A Review of In Vivo and Computational Model Studies
,”
J. Biomech.
,
49
(
6
), pp.
833
845
.
20.
Nachemson
,
A.
,
1966
, “
The Load on Lumbar Disks in Different Positions of the Body
,”
Clin. Orthop. Relat. Res.
,
45
, pp.
107
122
.
21.
Takahashi
,
I.
,
Kikuchi
,
S.
,
Sato
,
K.
, and
Sato
,
N.
,
2006
, “
Mechanical Load of the Lumbar Spine During Forward Bending Motion of the Trunk—a Biomechanical Study
,”
Spine
,
31
(
1
), pp.
18
23
.
22.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
,
1999
, “
New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
,
24
(
8
), pp.
755
762
.
23.
Wilke
,
H. J.
,
Neef
,
P.
,
Hinz
,
B.
,
Seidel
,
H.
, and
Claes
,
L.
,
2001
, “
Intradiscal Pressure Together With Anthropometric Data—a Data Set for the Validation of Models
,”
Clin. Biomech.
,
16
(
1
), pp.
S111
S126
.
24.
Bashkuev
,
M.
,
Vergroesen
,
P. P.
,
Dreischarf
,
M.
,
Schilling
,
C.
,
van der Veen
,
A. J.
,
Schmidt
,
H.
, and
Kingma
,
I.
,
2016
, “
Intradiscal Pressure Measurements: A Challenge or a Routine?
,”
J. Biomech.
,
49
(
6
), pp.
864
868
.
25.
Reitmaier
,
S.
,
Schmidt
,
H.
,
Ihler
,
R.
,
Kocak
,
T.
,
Graf
,
N.
,
Ignatius
,
A.
, and
Wilke
,
H. J.
,
2013
, “
Preliminary Investigations on Intradiscal Pressures During Daily Activities: An In Vivo Study Using the Merino Sheep
,”
PLoS One
,
8
(
7
), p.
e69610
.
26.
Vergroesen
,
P. P. A.
,
van der Veen
,
A. J.
,
van Royen
,
B. J.
,
Kingma
,
I.
, and
Smit
,
T. H.
,
2014
, “
Intradiscal Pressure Depends on Recent Loading and Correlates With Disc Height and Compressive Stiffness
,”
Eur. Spine J.
,
23
(
11
), pp.
2359
2368
.
27.
Wiseman
,
C. M.
,
Lindsey
,
D. P.
,
Fredrick
,
A. D.
, and
Yerby
,
S. A.
,
2005
, “
The Effect of an Interspinous Process Implant on Facet Loading During Extension
,”
Spine
,
30
(
8
), pp.
903
907
.
28.
Lindsey
,
D. P.
,
Swanson
,
K. E.
,
Fuchs
,
P.
,
Hsu
,
K. Y.
,
Zucherman
,
J. F.
, and
Yerby
,
S. A.
,
2003
, “
The Effects of an Interspinous Implant on the Kinematics of the Instrumented and Adjacent Levels in the Lumbar Spine
,”
Spine
,
28
(
19
), pp.
2192
2197
.
29.
Arjmand
,
N.
, and
Shirazi-Adl
,
A.
,
2006
, “
Model and in vivo Studies on Human Trunk Load Partitioning and Stability in Isometric Forward Flexions
,”
J. Biomech.
,
39
(
3
), pp.
510
521
.
30.
Arjmand
,
N.
,
Gagnon
,
D.
,
Plamondon
,
A.
,
Shirazi-Adl
,
A.
, and
Lariviere
,
C.
,
2010
, “
A Comparative Study of Two Trunk Biomechanical Models Under Symmetric and Asymmetric Loadings
,”
J. Biomech.
,
43
(
3
), pp.
485
491
.
31.
Dao
,
T. T.
,
Pouletaut
,
P.
,
Charleux
,
F.
,
Lazáry
,
Á.
,
Eltes
,
P.
,
Varga
,
P. P.
, and
Ho Ba Tho
,
M. C.
,
2015
, “
Multimodal Medical Imaging (CT and Dynamic MRI) Data and Computer-Graphics Multi-Physical Model for the Estimation of Patient Specific Lumbar Spine Muscle Forces
,”
Data Knowl. Eng.
,
96–97
, pp.
3
18
.
32.
Dao
,
T. T.
,
2016
, “
Enhanced Musculoskeletal Modeling for Prediction of Intervertebral Disc Stress Within Annulus Fibrosus and Nucleus Pulposus Regions During Flexion Movement
,”
J. Med. Biol. Eng.
,
36
(
4
), pp.
583
593
.
33.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelan
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(11), pp.
1940
1950
.
34.
Pearcy
,
M. J.
, and
Bogduk
,
N.
,
1988
, “
Instantaneous Axes of Rotation of the Lumbar Intervertebral Joints
,”
Spine
,
13
(
9
), pp.
1033
1041
.
35.
Groth
,
K. M.
, and
Granata
,
K. P.
,
2008
, “
The Viscoelastic Standard Nonlinear Solid Model: Predicting the Response of the Lumbar Intervertebral Disk to Low-Frequency Vibrations
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
031005
.
36.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J.-C.
,
Pujol
,
S.
,
Bauer
,
C.
,
Jennings
,
D.
,
Fennessy
,
F.
,
Sonka
,
M.
,
Buatti
,
J.
,
Aylward
,
S. R.
,
Miller
,
J. V.
,
Pieper
,
S.
, and
Kikinis
,
R.
,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magnetic Resonance Imaging
30
(
9
), pp.
1323
1341
.
37.
Sengupta
,
D. K.
, and
Herkowitz
,
H. N.
,
2012
, “
Pedicle Screw-Based Posterior Dynamic Stabilization: Literature Review
,”
Adv. Orthop.
,
2012
, p.
424268
.
38.
Agarwal
,
A.
,
Ingels
,
M.
,
Kodigudla
,
M.
,
Momeni
,
N.
,
Goel
,
V.
, and
Agarwal
,
A. K.
,
2016
, “
Adjacent-Level Hypermobility and Instrumented-Level Fatigue Loosening With Titanium and PEEK Rods for a Pedicle Screw System: An in vitro Study
,”
ASME J. Biomech. Eng.
,
138
(
5
), p.
051004
.
39.
Davies
,
M. A.
,
Bryant
,
S. C.
,
Larsen
,
S. P.
,
Murrey
,
D. B.
,
Nussman
,
D. S.
,
Laxer
,
E. B.
, and
Darden
,
B. V.
,
2006
, “
Comparison of Cervical Disk Implants and Cervical Disk Fusion Treatments in Human Cadaveric Models
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
481
486
.
40.
Bellini
,
C. M.
,
Galbusera
,
F.
,
Raimondi
,
M. T.
,
Mineo
,
G. V.
, and
Brayda-Bruno
,
M.
,
2007
, “
Biomechanics of the Lumbar Spine After Dynamic Stabilization
,”
J. Spinal. Disord. Tech.
,
20
(
6
), pp.
423
429
.
41.
Warden
,
K. E.
, and
Davy
,
D. T.
,
2010
, “
Localized Trabecular Damage Adjacent to Interbody Fusion Devices
,”
Spine
,
35
(
8
), pp.
874
880
.
42.
Green
,
D. W.
,
Lawhorne
,
T. W.
,
Widmann
,
R. F.
,
Kepler
,
C. K.
,
Ahern
,
C.
,
Mintz
,
D. N.
,
Rawlins
,
B. A.
,
Burke
,
S. W.
, and
Boachie-Adjei
,
O.
,
2011
, “
Long-Term Magnetic Resonance Imaging Follow-Up Demonstrates Minimal Transitional Level Lumbar Disc Degeneration After Posterior Spine Fusion for Adolescent Idiopathic Scoliosis
,”
Spine
,
36
(
23
), pp.
1948
1954
.
43.
Hikata
,
T.
,
Kamata
,
M.
, and
Furukawa
,
M.
,
2014
, “
Risk Factors for Adjacent Segment Disease After Posterior Lumbar Interbody Fusion and Efficacy of Simultaneous Decompression Surgery for Symptomatic Adjacent Segment Disease
,”
J. Spinal Disord. Tech.
,
27
(
2
), pp.
70
75
.
44.
Box
,
G. E. P.
, and
Norman
,
R. D.
,
1987
,
Empirical Model-Building and Response Surfaces
,
Wiley
,
New York
.
45.
Malandrino
,
A.
,
Pozo
,
J. M.
,
Castro-Mateos
,
I.
,
Frangi
,
A. F.
,
van Rijsbergen
,
M. M.
,
Ito
,
K.
,
Wilke
,
H. J.
,
Dao
,
T. T.
,
Ho Ba Tho
,
M. C.
,
Noailly
,
J.
,
2015
, “
On the Relative Relevance of Subject-Specific Geometries and Degeneration-Specific Mechanical Properties for the Study of Cell Death in Human Intervertebral Disc Models
,”
Front. Bioeng. Biotechnol.
,
3
(
5
), pp.
1
15
.
46.
Wagnac
,
E.
,
Arnoux
,
P. J.
,
Garo
,
A.
,
El-Rich
,
M.
, and
Aubin
,
C. E.
,
2001
, “
Calibration of Hyperelastic Material Properties of the Human Lumbar Intervertebral Disc Under Fast Dynamic Compressive Loads
,”
ASME J. Biomech. Eng.
,
133
(
10
), p.
101007
.
47.
Baer
,
A. E.
,
Laursen
,
T. A.
,
Guilak
,
F.
, and
Setton
,
L. A.
,
2003
, “
The Micromechanical Environment of Intervertebral Disc Cells Determined by a Finite Deformation, Anisotropic, and Biphasic Finite Element Model
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
1
11
.
48.
Dao
,
T. T.
, and
Ho Ba Tho
,
M. C.
,
2014
,
Biomechanics of the Musculoskeletal System: Modelling of Data Uncertainty and Knowledge
,
Wiley Publisher, Hermes Penton Ltd.
,
London, UK
.
49.
Dao
,
T. T.
, and
Ho Ba Tho
,
M. C.
,
2015
, “
Assessment of Parameter Uncertainty in Rigid Musculoskeletal Simulation Using a Probabilistic Approach
,”
J. Musculoskeletal Res.
,
18
(
3
), p.
1550013
.
50.
Antoniou
,
J.
,
Epure
,
L. M.
,
Michalek
,
A. J.
,
Grant
,
M. P.
,
Iatridis
,
J. C.
, and
Mwale
,
F.
,
2013
, “
Analysis of Quantitative Magnetic Resonance Imaging and Biomechanical Parameters on Human Discs With Different Grades of Degeneration
,”
J. Magn. Reson. Imaging.
,
38
(
6
), pp.
1402
1414
.
51.
Walter
,
B. A.
,
Illien-Jünger
,
S.
,
Nasser
,
P. R.
,
Hecht
,
A. C.
, and
Iatridis
,
J. C.
,
2014
, “
Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture
,”
J. Biomech.
,
47
(
9
), pp.
2095
2101
.
52.
Wilke
,
H. J.
,
Kaiser
,
D.
,
Volkheimer
,
D.
,
Hackenbroch
,
C.
,
Püschel
,
K.
, and
Rauschmann
,
M.
,
2016
, “
A Pedicle Screw System and a Lamina Hook System Provide Similar Primary and Long-Term Stability: A Biomechanical in vitro Study With Quasi-Static and Dynamic Loading Conditions
,”
Eur. Spine J.
,
25
(
9
), pp.
2919
2928
.
53.
Dao
,
T. T.
,
Marin
,
F.
,
Pouletaut
,
P.
,
Aufaure
,
P.
,
Charleux
,
F.
, and
Ho Ba Tho
,
M. C.
,
2012
, “
Estimation of Accuracy of Patient Specific Musculoskeletal Modeling: Case Study on a Post-Polio Residual Paralysis Subject
,”
Comput. Method Biomech. Biomed. Eng.
,
15
(
7
), pp.
745
775
.
You do not currently have access to this content.