This paper numerically investigates non-Newtonian blood flow with oxygen and carbon dioxide transport across and along an array of uniformly square and staggered arranged fibers at various porosity (ε) levels, focussing on a low Reynolds number regime (Re < 10). The objective is to establish suitable mass transfer correlations, expressed in the form of Sherwood number (Sh = f(ε, Re, Sc)), that identifies the link from local mass transfer investigations to full-device analyses. The development of a concentration field is initially investigated and expressions are established covering the range from a typical deoxygenated condition up to a full oxygenated condition. An important step is identified where a cut-off point in those expressions is required to avoid any under- or over-estimation on the Sherwood number. Geometrical features of a typical commercial blood oxygenator is adopted and results in general show that a balance in pressure drop, shear stress, and mass transfer is required to avoid potential blood trauma or clotting formation. Different definitions of mass transfer correlations are found for oxygen/carbon dioxide, parallel/transverse flow, and square/staggered configurations, respectively. From this set of correlations, it is found that transverse flow has better gas transfer than parallel flow which is consistent with reported literature. The mass transfer dependency on fiber configuration is observed to be pronounced at low porosity. This approach provides an initial platform when one is looking to improve the mass transfer performance in a blood oxygenator without the need to conduct any numerical simulations or experiments.

References

References
1.
Gaylor
,
J.
,
1988
, “
Membrane Oxygenators: Current Developments in Design and Application
,”
J. Biomed. Eng.
,
10
(
6
), pp.
541
547
.
2.
Iwahashi
,
H.
,
Yuri
,
K.
, and
Nosé
,
Y.
,
2004
, “
Development of the Oxygenator: Past, Present, and Future
,”
J. Artif. Organs
,
7
(
3
), pp.
111
120
.
3.
Federspiel
,
W. J.
, and
Henchir
,
K. A.
,
2014
,
Lung, Artificial: Basic Principles and Current Applications
,
2nd ed.
, CRC Press, Boca Raton, FL.http://dx.doi.org/10.1081/E-EBBE2-120007349
4.
Lipnizki
,
F.
, and
Field
,
R. W.
,
2001
, “
Mass Transfer Performance for Hollow Fiber Modules With Shell-Side Axial Feed Flow: Using an Engineering Approach to Develop a Framework
,”
J. Membr. Sci.
,
193
(
2
), pp.
195
208
.
5.
Wickramasinghe
,
S. R.
,
Semmens
,
M. J.
, and
Cussler
,
E. L.
,
1991
, “
Better Hollow Fiber Contactors
,”
J. Membr. Sci.
,
62
(
3
), pp.
371
388
.
6.
Wickramasinghe
,
S. R.
,
Semmens
,
M. J.
,
Zhang
,
T.
, and
Cussler
,
E. L.
,
1992
, “
Mass Transfer in Various Hollow Fiber Geometries
,”
J. Membr. Sci.
,
69
(
3
), pp.
235
250
.
7.
Wickramasinghe
,
S. R.
, and
Han
,
B.
,
2002
, “
Mass and Momentum Transfer in Commercial Blood Oxygenators
,”
Desalination
,
148
(
1–3
), pp.
227
233
.
8.
Wickramasinghe
,
S. R.
,
Garcia
,
J. D.
, and
Han
,
B.
,
1992
, “
Mass and Momentum Transfer in Hollow Fiber Blood Oxygenators
,”
J. Membr. Sci.
,
69
(
3
), pp.
235
250
.
9.
Wickramasinghe
,
S. R.
, and
Han
,
B.
,
2005
, “
Designing Microporous Hollow Fiber Blood Oxygenators
,”
Chem. Eng. Res. Des.
,
83
(
3
), pp.
256
267
.
10.
Vaslef
,
S. N.
,
Cook
,
K. E.
,
Leonard
,
R. J.
,
Mockros
,
L. F.
, and
Anderson
,
R. W.
,
1994
, “
Design and Evaluation of a New, Low Pressure Loss, Implantable Artificial Lung
,”
ASAIO J.
,
40
(
3
), pp.
522
526
.http://journals.lww.com/asaiojournal/pages/articleviewer.aspx?year=1994&issue=07000&article=00055&type=abstract
11.
Vaslef
,
S. N.
,
Mockros
,
L. F.
,
Anderson
,
R. W.
, and
Leonard
,
R. J.
,
1994
, “
Use of a Mathematical Model to Predict Oxygen Transfer Rates in Hollow Fiber Membrane Oxygenators
,”
ASAIO J.
,
40
(
4
), pp.
990
996
.
12.
Nagase
,
K.
,
Kohori
,
F.
, and
Sakai
,
K.
,
2005
, “
Oxygen Transfer Performance of a Membrane Oxygenator Composed of Crossed and Parallel Hollow Fibers
,”
Biochem. Eng. J.
,
24
(
2
), pp.
105
113
.
13.
Dierickx
,
P. W.
,
De Wachter
,
D. S.
,
De Somer
,
F.
,
Van Nooten
,
G.
, and
Verdonck
,
P. R.
,
2001
, “
Mass Transfer Characteristics of Artificial Lungs
,”
Int. J. Artif. Organs
,
47
(
6
), pp.
628
633
.
14.
Gabelman
,
A.
, and
Hwang
,
S.-T.
,
1999
, “
Hollow Fiber Membrane Contactors
,”
J. Membr. Sci.
,
159
(
1–2
), pp.
61
106
.
15.
Federspiel
,
W. J.
,
Hewitt
,
T. J.
, and
Hattler
,
B. G.
,
2000
, “
Experimental Evaluation of a Model for Oxygen Exchange in a Pulsating Intravascular Artificial Lung
,”
Ann. Biomed. Eng.
,
28
(
2
), pp.
160
167
.
16.
Matsuda
,
N.
, and
Sakai
,
K.
,
2000
, “
Blood Flow and Oxygen Transfer Rate of an Outside Blood Flow Membrane Oxygenator
,”
J. Membr. Sci.
,
170
(
2
), pp.
153
158
.
17.
Svitek
,
R. G.
, and
Federspiel
,
W. J.
,
2008
, “
A Mathematical Model to Predict CO2 Removal in Hollow Fiber Membrane Oxygenators
,”
Ann. Biomed. Eng.
,
36
(
6
), pp.
992
1003
.
18.
Yang
,
M.-C.
, and
Cussler
,
E. L.
,
1986
, “
Designing Hollow-Fiber Contactors
,”
AIChE J.
,
32
(
11
), pp.
1910
1916
.
19.
Vaslef
,
S. N.
,
Mockros
,
L. F.
,
Cook
,
K. E.
,
Leonard
,
R. J.
,
Sung
,
J.
, and
Anderson
,
R. W.
,
1994
, “
Computer-Assisted Design of an Implantable, Intrathoracic Artificial Lung
,”
Artif. Organs
,
18
(
11
), pp.
813
817
.
20.
Zhang
,
J.
,
Nolan
,
T.
,
Zhang
,
T.
,
Griffith
,
B. P.
, and
Wu
,
Z. J. J.
,
2007
, “
Characterization of Membrane Blood Oxygenation Devices Using Computational Fluid Dynamics
,”
J. Membr. Sci.
,
288
(
1–2
), pp.
268
279
.
21.
Fill
,
B.
,
Gartner
,
M.
,
Johnson
,
G.
,
Horner
,
M.
, and
Ma
,
J.
,
2008
, “
Computational Fluid Flow and Mass Transfer of a Functionally Integrated Pediatric Pump-Oxygenator Configuration
,”
Int. J. Artif. Organs
,
54
(
2
), pp.
214
219
.
22.
Zhang
,
J.
,
Taskin
,
M. E.
,
Koert
,
A.
,
Zhang
,
T.
,
Gellman
,
B.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2009
, “
Computational Design and In Vitro Characterization of an Integrated Maglev Pump-Oxygenator
,”
Artif. Organs
,
33
(
10
), pp.
805
817
.
23.
Baker
,
D. A.
,
Holte
,
J. E.
, and
Patankar
,
S. V.
,
1991
, “
Computationally Two-Dimensional Finite-Difference Model for Hollow-Fiber Blood-Gas Exchange Devices
,”
Med. Biol. Eng. Comput.
,
29
(
5
), pp.
482
488
.
24.
Dierickx
,
P. W.
,
De Wachter
,
D. S.
, and
Verdonck
,
P. R.
,
2000
, “
Blood Flow Around Hollow Fibers
,”
Int. J. Artif. Organs
,
23
(
9
), pp.
610
617
.
25.
Dierickx
,
P. W.
,
De Wachter
,
D. S.
, and
Verdonck
,
P. R.
,
2001
, “
Two-Dimensional Finite Element Model for Oxygen Transfer in Cross-Flow Hollow Fiber Membrane Artificial Lungs
,”
Int. J. Artif. Organs
,
24
(
9
), pp.
628
635
.
26.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2010
, “
Micro-Scale Modeling of Flow and Oxygen Transfer in Hollow-Fiber Membrane Bundle
,”
J. Membr. Sci.
,
362
(
1
), pp.
172
183
.
27.
Zierenberg
,
J. R.
,
Fujioka
,
H.
,
Suresh
,
V.
,
Bartlett
,
R. H.
,
Hirschl
,
R. B.
, and
Grotberg
,
J. B.
,
2006
, “
Pulsatile Flow and Mass Transport Past a Circular Cylinder
,”
Phys. Fluids
,
18
(
1
), pp.
1
15
.http://dx.doi.org/10.1063/1.2164475
28.
Zierenberg
,
J. R.
,
Fujioka
,
H.
,
Hirschl
,
R. B.
,
Bartlett
,
R. H.
, and
Grotberg
,
J. B.
,
2007
, “
Pulsatile Blood Flow and Oxygen Transport Past a Circular Cylinder
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
202
215
.
29.
Chan
,
K.
,
Fujioka
,
H.
,
Bartlett
,
R. H.
, and
Grotberg
,
J. B.
,
2006
, “
Pulsatile Flow and Mass Transport Over an Array of Cylinders: Gas Transfer in a Cardiac-Driven Artificial Lung
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
85
96
.
30.
Zierenberg
,
J. R.
,
Fujioka
,
H.
,
Hirschl
,
R. B.
,
Bartlett
,
R. H.
, and
Grotberg
,
J. B.
,
2009
, “
Oxygen and Carbon Dioxide Transport in Time-Dependent Blood Flow Past Fiber Rectangular Arrays
,”
Phys. Fluids
,
21
(
3
), pp.
1
19
.
31.
Low
,
K. W. Q.
,
van Loon
,
R.
,
Rolland
,
S. A.
, and
Sienz
,
J.
,
2016
, “
Pore-Scale Modeling of Non-Newtonian Shear-Thinning Fluids in Blood Oxygenator Design
,”
ASME J. Biomech. Eng.
,
138
(
5
), p.
051001
.
32.
Marcinkowska–Gapińska
,
A.
,
Gapinski
,
J.
,
Elikowski
,
W.
,
Jaroszyk
,
F.
, and
Kubisz
,
L.
,
2007
, “
Comparison of Three Rheological Models of Shear Flow Behavior Studied on Blood Samples From Post-Infarction Patients
,”
Med. Biol. Eng. Comput.
,
45
(
9
), pp.
837
844
.
33.
Quemada
,
D.
,
1978
, “
Rheology of Concentrated Disperse Systems—II: A Model for Non-Newtonian Shear Viscosity in Steady Flows
,”
Rheol. Acta
,
17
(
6
), pp.
632
642
.
34.
Chan
,
K.
,
Fujioka
,
H.
,
Bartlett
,
R. H.
, and
Grotberg
,
J. B.
,
2007
, “
Pulsatile Blood Flow and Gas Exchange Across a Cylindrical Fiber Array
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
676
687
.
35.
Singh
,
M. P.
,
Sharan
,
M.
, and
Aminataei
,
A.
,
1989
, “
Development of Mathematical Formulae for O2 and CO2 Dissociation Curves in the Blood
,”
Math. Med. Biol.
,
6
(
1
), pp.
25
46
.
36.
Dash
,
R. K.
, and
Bassingthwaighte
,
J.
,
2010
, “
Erratum to: Blood HbO2 and HbCO2 Dissociation Curves at Varied O2, CO2, pH, 2,3-DPG, and Temperature Levels
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1683
1701
.
37.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
John Wiley & Sons
, New York.
38.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2006
,
Transport Phenomena
,
2nd ed.
,
John Wiley & Sons
, New York.
39.
Woerlee
,
G.
,
1988
, “
Blood Gases–Arterial and Venous
,”
Common Perioperative Problems and the Anaesthetist
(Developments in Critical Care Medicine and Anesthesiology), Vol.
18
,
Springer
, Dordrecht,
The Netherlands
, pp.
150
153
.
40.
ANSYS,
2011
,
ANSYS Documentations, Release 14.5 ed.
,
ANSYS Inc.
, Canonsburg, PA.
41.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2004
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
.
42.
Gebart
,
B. R.
,
1992
, “
Permeability of Unidirectional Reinforcements for RTM
,”
J. Compos. Mater.
,
26
(
8
), pp.
1100
1133
.
43.
Tamayol
,
A.
, and
Bahrami
,
M.
,
2010
, “
Parallel Flow Through Ordered Fibers: An Analytical Approach
,”
ASME J. Fluids Eng.
,
132
(
11
), pp.
1
7
.
44.
Coulaud
,
O.
,
Morel
,
P.
, and
Caltagirone
,
J. P.
,
1988
, “
Numerical Modeling of Nonlinear Effects in Laminar Flow Through a Porous Medium
,”
J. Fluid Mech.
,
190
(
5
), pp.
393
407
.
45.
Leverett
,
L.
,
Hellums
,
J.
,
Alfrey
,
C.
, and
Lynch
,
E.
,
1972
, “
Red Blood Cell Damage by Shear Stress
,”
Biophys. J.
,
12
(
3
), pp.
257
273
.
46.
Hellums
,
J. D.
,
1994
, “
1993 Whitaker Lecture: Biorheology in Thrombosis Research
,”
Ann. Biomed. Eng.
,
22
(
5
), pp.
445
455
.
47.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
,
2004
, “
Correlation of In Vivo Clot Deposition With the Flow Characteristics in the 50 CC Penn State Artificial Heart: A Preliminary Study
,”
ASAIO J.
,
50
(
6
), pp.
537
542
.
48.
Alemu
,
Y.
, and
Bluestein
,
D.
,
2007
, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.
49.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time, and Hemolysis Index
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
081002
.
50.
Costello
,
M.
,
Fane
,
A.
,
Hogan
,
P.
, and
Schofield
,
R.
,
1993
, “
The Effect of Shell Side Hydrodynamics on the Performance of Axial Flow Hollow Fiber Modules
,”
J. Membr. Sci.
,
80
(
1
), pp.
1
11
.
51.
Fasano
,
A.
,
Santos
,
R.
, and
Sequeira
,
A.
,
2012
, “
Blood Coagulation: A Puzzle for Biologists, a Maze for Mathematicians
,”
Modeling of Physiological Flows
(MS&A–Modeling, Simulation and Applications),
D.
Ambrosi
,
A.
Quarteroni
,
G.
Rozza
, eds., Vol.
5
,
Springer
,
Milan, Italy
, pp.
41
75
.
You do not currently have access to this content.