The fixation of uncemented acetabular components largely depends on the amount of bone ingrowth, which is influenced by the design of the implant surface texture. The objective of this numerical study is to evaluate the effect of these implant texture design factors on bone ingrowth around an acetabular component. The novelty of this study lies in comparative finite element (FE) analysis of 3D microscale models of the implant-bone interface, considering patient-specific mechanical environment, host bone material property and implant-bone relative displacement, in combination with sequential mechanoregulatory algorithm and design of experiment (DOE) based statistical framework. Results indicated that the bone ingrowth process was inhibited due to an increase in interbead spacing from 200 μm to 600 μm and bead diameter from 1000 μm to 1500 μm and a reduction in bead height from 900 μm to 600 μm. Bead height, a main effect, was found to have a predominant influence on bone ingrowth. Among the interaction effects, the combination of bead height and bead diameter was found to have a pronounced influence on bone ingrowth process. A combination of low interbead spacing (P = 200 μm), low bead diameter (D = 1000 μm), and high bead height (H = 900 μm) facilitated peri-acetabular bone ingrowth and an increase in average Young's modulus of newly formed tissue layer. Hence, such a surface texture design seemed to provide improved fixation of the acetabular component.

References

References
1.
HQIP
,
2012
, “
National Joint Registry for England and Wales, 9th Annual Report
,” Healthcare Quality Improvement Partnership, Hemel, Hempstead, UK.
2.
NZOA
,
2012
, “
The New Zealand Joint Registry: Thirteen Year Report January 1999 to December 2011
,” New Zealand Orthopaedic Association, Wellington, New Zealand.
3.
Davies
,
J. E.
,
1996
, “
In Vitro Modeling of the Bone/Implant Interface
,”
Anat. Rec.
,
245
(
2
), pp.
426
445
.
4.
Davies
,
J. E.
,
2003
, “
Understanding Peri-Implant Endosseous Healing
,”
J. Dent. Edu.
,
67
(
8
), pp.
932
949
.http://www.jdentaled.org/content/67/8/932.long
5.
Kienapfel
,
H.
,
Sprey
,
C.
,
Wilke
,
A.
, and
Griss
,
P.
,
1999
, “
Implant Fixation by Bone Ingrowth
,”
J. Arthroplasty
,
14
(
3
), pp.
355
368
.
6.
Bobyn
,
J. D.
,
Stackpool
,
G. J.
,
Hacking
,
S. A.
,
Tanzer
,
M.
, and
Krygier
,
J. J.
,
1999
, “
Characteristics of Bone Ingrowth and Interface Mechanics of a New Porous Tantalum Biomaterial
,”
J. Bone Joint Surg.
,
81B
(
5
), pp.
907
914
.http://www.bjj.boneandjoint.org.uk/content/81-B/5/907.long
7.
Bobyn
,
J. D.
,
Toh
,
K. K.
,
Hacking
,
S. A.
,
Tanzer
,
M.
, and
Krygier
,
J. J.
,
1999
, “
Tissue Response to Porous Tantalum Acetabular Cups: A Canine Model
,”
J. Arthroplasty
,
14
(
3
), pp.
347
354
.
8.
Burr
,
D. B.
,
Mori
,
S.
,
Boyd
,
R. D.
,
Sun
,
T. C.
,
Blaha
,
J. D.
,
Lane
,
L.
, and
Parr
,
J.
,
1993
, “
Histomorphometric Assessment of the Mechanisms for Rapid Ingrowth of Bone to HA/TCP-Coated Implants
,”
J. Biomed. Mater. Res.
,
27
(
5
), pp.
645
653
.
9.
Caja
,
V. L.
,
Moroni
,
A.
,
Egger
,
E. L.
,
Gottsauner-Wolf
,
F.
, and
Chao
,
E. Y. S.
,
1994
, “
The Effect of Bead Diameter on the Accuracy of Two Current Techniques Used to Quantify Bone Ingrowth in Porous-Coated Implants
,”
J. Mater. Sci. Mater. Med.
,
5
(
1
), pp.
29
32
.
10.
D'Lima
,
D. D.
,
Lemperle
,
S. M.
,
Chen
,
P. C.
,
Holmes
,
R. E.
, and
Colwell
,
C. W.
,
1998
, “
Bone Response to Implant Surface Morphology
,”
J. Arthroplasty
,
13
(
8
), pp.
928
934
.
11.
Gottlander
,
M.
, and
Albrektsson
,
T.
,
1992
, “
Histomorphometric Analyzes of Hydroxyapatite-Coated and Uncoated Titanium Implants. The Importance of the Implant Design
,”
Clin. Oral Implants Res.
,
3
(
2
), pp.
71
76
.
12.
Moroni
,
A.
,
Caja
,
V. L.
,
Egger
,
E. L.
,
Trinchese
,
L.
, and
Chao
,
E. Y. S.
,
1994
, “
Histomorphometry of Hydroxyapatite Coated and Uncoated Porous Titanium Bone Implants
,”
Biomaterials
,
15
(
11
), pp.
926
930
.
13.
Moroni
,
A.
,
Caja
,
V. L.
,
Sabato
,
C.
,
Egger
,
E. L.
,
Gottsauner-Wolf
,
F.
, and
Chao
,
E. Y. S.
,
1994
, “
Bone Ingrowth Analysis and Interface Evaluation of Hydroxyapatite Coated Versus Uncoated Titanium Porous Bone Implants
,”
J. Mater. Sci. Mater Med.
,
5
(
6–7
), pp.
411
416
.
14.
Frenkel
,
S. R.
,
Jaffe
,
W. L.
,
Dimaano
,
F.
,
Iesaka
,
K.
, and
Hua
,
T.
,
2004
, “
Bone Response to a Novel Highly Porous Surface in a Canine Implantable Chamber
,”
J. Biomed. Mater. Res., Part B
,
71
(
2
), pp.
387
391
.
15.
Willie
,
B. M.
,
Yang
,
X.
,
Kelly
,
N. H.
,
Han
,
J.
,
Nair
,
T.
,
Wright
,
T. M.
,
van der Meulen
,
M. C.
, and
Bostrom
,
M. P.
,
2010
, “
Cancellous Bone Osseointegration Is Enhanced by In Vivo Loading
,”
Tissue Eng., Part C
,
16
(
6
), pp.
1399
1406
.
16.
Bragdon
,
C. R.
,
Jasty
,
M.
,
Greene
,
M.
,
Rubash
,
H. E.
, and
Harris
,
W. H.
,
2004
, “
Biologic Fixation of Total Hip Implants
,”
J. Bone Joint Surg.
,
86A
(Suppl
2
), pp.
105
117
.http://jbjs.org/content/86/suppl_2/105.long
17.
Rungsiyakull
,
C.
,
Li
,
Q.
,
Sun
,
G.
,
Li
,
W.
, and
Swain
,
M. V.
,
2010
, “
Surface Morphology Optimization for Osseointegration of Coated Implants
,”
Biomaterials
,
31
(
27
), pp.
7196
7204
.
18.
Chen
,
J.
,
Rungsiyakull
,
C.
,
Li
,
W.
,
Chen
,
Y.
,
Swain
,
M.
, and
Li
,
Q.
,
2013
, “
Multiscale Design of Surface Morphological Gradient for Osseointegration
,”
J. Mech. Behav. Biomed. Mater.
,
20
, pp.
387
397
.
19.
Chou
,
H. Y.
, and
Müftü
,
S.
,
2013
, “
Simulation of Peri-Implant Bone Healing Due to Immediate Loading in Dental Implant Treatments
,”
J. Biomech.
,
46
(
5
), pp.
871
878
.
20.
Mukherjee
,
K.
, and
Gupta
,
S.
,
2016
, “
Bone Ingrowth Around Porous Coated Acetabular Implant: A Three-Dimensional Finite Element Study Using Mechanoregulatory Algorithm
,”
Biomech. Model Mechanobiol.
,
15
(
2
), pp.
389
403
.
21.
Mukherjee
,
K.
, and
Gupta
,
S.
,
2016
, “
Mechanobiological Simulations of Peri-Acetabular Bone Ingrowth: A Comparative Analysis of Cell-Phenotype Specific and Phenomenological Algorithms
,”
Med. Biol. Eng. Comput.
, (in press).
22.
Ghosh
,
R.
,
Mukherjee
,
K.
, and
Gupta
,
S.
,
2013
, “
Bone Remodeling Around Uncemented Metallic and Ceramic Acetabular Components
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
5
), pp.
490
502
.
23.
Ghosh
,
R.
, and
Gupta
,
S.
,
2014
, “
Bone Remodeling Around Cementless Composite Acetabular Components: The Effects of Implant Geometry and Implant–Bone Interfacial Conditions
,”
J. Mech. Behav. Biomed. Mater.
,
32
, pp.
257
269
.
24.
Mukherjee
,
K.
, and
Gupta
,
S.
,
2016
, “
The Effects of Musculoskeletal Loading Regimes on Numerical Evaluations of Acetabular Component
,”
Proc. Inst. Mech. Eng., Part H
,
230
(
10
), pp.
918
929
.
25.
Taddei
,
F.
,
Pancanti
,
A.
, and
Viceconti
,
M.
,
2004
, “
An Improved Method for the Automatic Mapping of Computed Tomography Numbers Onto Finite Element Models
,”
Med. Eng. Phys.
,
26
(
1
), pp.
61
69
.
26.
Dalstra
,
M.
, and
Huiskes
,
R.
,
1995
, “
Load Transfer Across the Pelvis Bone
,”
J. Biomech.
,
28
(
6
), pp.
715
724
.
27.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
,
2005
, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation, Sensitive Studies
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
364
373
.
28.
Zhang
,
Q. H.
,
Wang
,
J. Y.
,
Lupton
,
C.
,
Lupton
,
C.
,
Heaton-Adegbile
,
P.
,
Guo
,
Z. X.
,
Liu
,
Q.
, and
Tong
,
J.
,
2010
, “
A Subject-Specific Pelvic Bone Model and Its Application to Cemented Acetabular Replacements
,”
J. Biomech.
,
43
(
14
), pp.
2722
2727
.
29.
Ghosh
,
R.
,
Pal
,
B.
,
Ghosh
,
D.
, and
Gupta
,
S.
,
2015
, “
Finite Element Analysis of a Hemi-Pelvis: The Effect of Inclusion of Cartilage Layer on Acetabular Stresses and Strain
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
7
), pp.
697
710
.
30.
Yew
,
A.
,
Jin
,
Z. M.
,
Donn
,
A.
,
Morlock
,
M. M.
, and
Isaac
,
G.
,
2006
, “
Deformation of Press-Fitted Metallic Resurfacing Cups—Part 2: Finite Element Simulation
,”
Proc. Inst. Mech. Eng., Part H
,
220
(
2
), pp.
311
319
.
31.
Liu
,
F.
,
Jin
,
Z.
,
Roberts
,
P.
, and
Grigoris
,
P.
,
2006
, “
Importance of Head Diameter, Clearance, and Cup Wall Thickness in Elastohydrodynamic Lubrication Analysis of Metal-on-Metal Hip Resurfacing Prostheses
,”
Proc. Inst. Mech. Eng., Part H
,
220
(
6
), pp.
695
704
.
32.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
33.
Dostal
,
W. F.
, and
Andrews
,
J. G.
,
1981
, “
A Three-Dimensional Biomechanical Model of Hip Musculature
,”
J. Biomech.
,
14
(
11
), pp.
803
812
.
34.
Thompson
,
M. S.
,
Northmore-Ball
,
M. D.
, and
Tanner
,
K. E.
,
2002
, “
Effect of Acetabular Resurfacing Component Material and Fixation on the Strain Distribution in the Pelvis
,”
Proc. Inst. Mech. Eng., Part H
,
216
(
4
), pp.
237
245
.
35.
Clarke
,
S. G.
,
Phillips
,
A. T. M.
, and
Bull
,
A. M. J.
,
2013
, “
Evaluating a Suitable Level of Model Complexity for Finite Element Analysis of the Intact Acetabulum
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
7
), pp.
717
724
.
36.
Tarala
,
M.
,
Waanders
,
D.
,
Biemond
,
J. E.
,
Hannink
,
G.
,
Janssen
,
D.
,
Buma
,
P.
, and
Verdonschot
,
N.
,
2011
, “
The Effect of Bone Ingrowth Depth on the Tensile and Shear Strength of the Implant–Bone e-Beam Produced Interface
,”
J. Mater. Sci. Mater. Med.
,
22
(
10
), pp.
2339
2346
.
37.
Liu
,
X.
, and
Niebur
,
G. L.
,
2008
, “
Bone Ingrowth Into a Porous-Coated Implant Predicted by a Mechano-Regulatory Tissue Differentiation Algorithm
,”
Biomech. Model Mechanobiol.
,
7
(
4
), pp.
335
344
.
38.
Andreykiv
,
A.
,
Van Keulen
,
F.
, and
Prendergast
,
P. J.
,
2008
, “
Computational Mechanobiology to Study the Effect of Surface Geometry on Peri-Implant Tissue Differentiation
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051015
.
39.
Dickinson
,
A.
,
Taylor
,
A.
, and
Browne
,
M.
,
2012
, “
Implant–Bone Interface Healing and Adaptation in Resurfacing Hip Replacement
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
9
), pp.
935
947
.
40.
Puthumanapully
,
P. K.
, and
Browne
,
M.
,
2011
, “
Tissue Differentiation Around a Short Stemmed Metaphyseal Loading Implant Employing a Modified Mechanoregulatory Algorithm: A Finite Element Study
,”
J. Orthop. Res.
,
29
(
5
), pp.
787
794
.
41.
Mukherjee
,
K.
, and
Gupta
,
S.
,
2014
, “
Simulation of Tissue Differentiation Around Acetabular Cups: The Effects of Implant-Bone Relative Displacement and Polar Gap
,”
Adv. Biomech. Appl.
,
1
(
2
), pp.
95
109
.
42.
Lacroix
,
D.
, and
Prendergast
,
P. J.
,
2002
, “
A Mechano-Regulation Model for Tissue Differentiation During Fracture Healing: Analysis of Gap Size and Loading
,”
J. Biomech.
,
35
(
9
), pp.
1163
1171
.
43.
Lacroix
,
D.
, and
Prendergast
,
P. J.
,
2002
, “
Three-Dimensional Simulation of Fracture Repair in the Human Tibia
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
5
), pp.
369
376
.
44.
Claes
,
L. E.
, and
Heigele
,
C. A.
,
1999
, “
Magnitudes of Local Stress and Strain Along Bony Surfaces Predict the Course and Type of Fracture Healing
,”
J. Biomech.
,
32
(
3
), pp.
255
266
.
45.
Lacroix
,
D.
,
Prendergast
,
P. J.
,
Li
,
G.
, and
Marsh
,
D.
,
2002
, “
Biomechanical Model to Simulate Tissue Differentiation and Bone Regeneration: Application to Fracture Healing
,”
Med. Biol. Eng. Comput.
,
40
(
1
), pp.
14
21
.
46.
Hori
,
R. Y.
, and
Lewis
,
J. L.
,
1982
, “
Mechanical Properties of the Fibrous Tissue Found at the Bone-Cement Interface Following Total Joint Replacement
,”
J. Biomed. Mater. Res.
,
16
(
6
), pp.
911
927
.
47.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
1997
, “
Optical and Mechanical Determination of Poisson's Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
,
30
(
3
), pp.
235
241
.
48.
Montgomery
,
D.
,
2008
,
Design and Analysis of Experiments
,
Wiley
,
Hoboken, NJ
.
49.
Phadke
,
M. S.
,
1989
,
Quality Engineering Using Robust Design
,
Prentice-Hall
,
Engelwood Cliffs, NJ
.
50.
FDA
,
2016
, “
Code of Federal Food and Drug Administration Regulations: Hip Joint Metal/Polymer/Metal Semi-Constrained Porous-Coated Uncemented Prosthesis
,” US Food and Drug Administration, Silver Spring, MD, accessed June 5,
2016
, https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr= 888.3358
51.
Isaksson
,
H.
,
van Donkelaar
,
C. C.
,
Huiskes
,
R.
,
Yao
,
J.
, and
Ito
,
K.
,
2008
, “
Determining the Most Important Cellular Characteristics for Fracture Healing Using Design of Experiments Methods
,”
J. Theor. Biol.
,
255
(
1
), pp.
26
39
.
52.
Isaksson
,
H.
,
van Donkelaar
,
C. C.
, and
Ito
,
K.
,
2009
, “
Sensitivity of Tissue Differentiation and Bone Healing Predictions to Tissue Properties
,”
J. Biomech.
,
42
(
5
), pp.
555
564
.
53.
Funkenbusch
,
P. D.
,
2005
,
Practical Guide to Designed Experiments: A Unified Modular Approach
,
Marcel Dekker
,
New York
.
54.
Dar
,
F. H.
,
Meakin
,
J. R.
, and
Aspden
,
R. M.
,
2002
, “
Statistical Methods in Finite Element Analysis
,”
J. Biomech.
,
35
(
9
), pp.
1155
1161
.
55.
Claes
,
L. E.
,
Heigele
,
C. A.
,
Neidlinger-Wilke
,
C.
,
Kaspar
,
D.
,
Seidl
,
W.
,
Margevicius
,
K. J.
, and
Augat
,
P.
,
1998
, “
Effects of Mechanical Factors on the Fracture Healing Process
,”
Clin. Orthop. Relat. Res.
,
355
(
Suppl
), pp.
S132
S147
.http://journals.lww.com/corr/Abstract/1998/10001/Effects_of_Mechanical_Factors_on_the_Fracture.15.aspx
56.
FDA
,
2006
, “
Birmingham Hip Resurfacing (BHR) System: Summary of Safety and Effectiveness Data
,” US Food and Drug Administration, Silver Spring, MD, accessed Aug. 21,
2014
, http://www.accessdata.fda.gov/cdrh_docs/pdf4/P040033b.pdf
57.
Engh
,
C. A.
,
Zettl-Schaffer
,
K. F.
,
Kukita
,
Y.
,
Sweet
,
D.
,
Jasty
,
M.
, and
Bragdon
,
C.
,
1993
, “
Histological and Radiographic Assessment of Well Functioning Porous-Coated Acetabular Components. A Human Postmortem Retrieval Study
,”
J. Bone Joint Surg.
,
75A
(
6
), pp.
814
824
.http://jbjs.org/content/75/6/814.long
58.
Hanzlik
,
J. A.
, and
Day
,
J. S.
,
2013
, “
Bone Ingrowth in Well-Fixed Retrieved Porous Tantalum Implants
,”
J. Arthroplasty
,
28
(
6
), pp.
922
927
.
59.
Claes
,
L.
,
Augat
,
P.
,
Suger
,
G.
, and
Wilke
,
H. J.
,
1997
, “
Influence of Size and Stability of the Osteotomy Gap on the Success of Fracture Healing
,”
J. Orthop. Res.
,
15
(
4
), pp.
577
584
.
60.
Simon
,
U.
,
Augat
,
P.
,
Ignatius
,
A.
, and
Claes
,
L.
,
2003
, “
Influence of the Stiffness of Bone Defect Implants on the Mechanical Conditions at the Interface–A Finite Element Analysis With Contact
,”
J. Biomech.
,
36
(
8
), pp.
1079
1086
.
61.
Wong
,
A. S.
,
New
,
A. M. R.
,
Isaacs
,
G.
, and
Taylor
,
M.
,
2005
, “
Effect of Bone Material Properties on the Initial Stability of a Cementless Hip Stem: A Finite Element Study
,”
Proc. Inst. Mech. Eng., Part H
,
219
(
4
), pp.
265
275
.
62.
Elliott
,
B.
, and
Goswami
,
T.
,
2012
, “
Implant Material Properties and Their Role in Micromotion and Failure in Total Hip Arthroplasty
,”
Int. J. Mech. Mater. Des.
,
8
(
1
), pp.
1
7
.
63.
Berahmani
,
S.
,
Janssen
,
D.
,
van Kessel
,
S.
,
Wolfson
,
D.
,
de Waal Malefijt
,
M.
,
Buma
,
P.
, and
Verdonschot
,
N.
,
2015
, “
An Experimental Study to Investigate Biomechanical Aspects of the Initial Stability of Press-Fit Implants
,”
J. Mech. Behav. Biomed. Mater.
,
42
, pp.
177
185
.
64.
Marco
,
F.
,
Milena
,
F.
,
Gianluca
,
G.
, and
Vittoria
,
O.
,
2005
, “
Peri-Implant Osteogenesis in Health and Osteoporosis
,”
Micron
,
36
(
7
), pp.
630
644
.
65.
Vercaigne
,
S.
,
Wolke
,
J. G. C.
,
Naert
,
I.
, and
Jansen
,
J. A.
,
1998
, “
The Effect of Titanium Plasma-Sprayed Implants on Trabecular Bone Healing in the Goat
,”
Biomaterials
,
19
(
11–12
), pp.
1093
1099
.
66.
Hansson
,
S.
,
1999
, “
The Implant Neck: Smooth or Provided With Retention Elements. A Biomechanical Approach
,”
Clin. Oral Implants Res.
,
10
(
5
), pp.
394
405
.
67.
Cochran
,
D. L.
,
Nummikoski
,
P. V.
,
Higginbottom
,
F. L.
,
Hermann
,
J. S.
,
Makins
,
S. R.
, and
Buser
,
D.
,
1996
, “
Evaluation of an Endosseous Titanim Implant With a Sandblasted and Acid-Etched Surface in the Canine Mandible: Radiographic Results
,”
Clin. Oral Implants Res.
,
7
(
3
), pp.
240
252
.
68.
Weng
,
D.
,
Hoffmer
,
M.
,
Hurzeler
,
M. B.
, and
Richter
,
E. J.
,
2003
, “
Osseotite vs. Machined Surface in Poor Bone Quality
,”
Clin. Oral Implants Res.
,
14
(
6
), pp.
703
708
.
69.
Borsari
,
V.
,
Giavaresi
,
G.
,
Fini
,
M.
,
Torricelli
,
P.
,
Tschon
,
M.
,
Chiesa
,
R.
,
Chiusoli
,
L.
,
Salito
,
A.
,
Volpert
,
A.
, and
Giardino
,
R.
,
2005
, “
Comparative In Vitro Study on a Ultra-High Roughness and Dense Titanium Coating
,”
Biomaterials
,
26
(
24
), pp.
4948
4955
.
70.
Martin
,
J. Y.
,
Schwartz
,
Z.
,
Hummert
,
T. W.
,
Schraub
,
D. M.
,
Simpson
,
J.
, Jr.
,
Lankfond
,
J.
,
Dean
,
D. D.
,
Cochran
,
D. L.
, and
Boyan
,
B. D.
,
1995
, “
Effect of Titanium Surface Roughness on Proliferation, Differentiation, and Protein Synthesis of Human Osteoblast-Like Cells (MG63)
,”
J. Biomed. Mater. Res.
,
29
(
3
), pp.
389
401
.
71.
Wen
,
X.
,
Wang
,
X.
, and
Zhang
,
N.
,
1996
, “
Microrough Surface of Metallic Biomaterials: A Literature Review
,”
Bio-Med. Mater. Eng.
,
6
(
3
), pp.
173
189
.
72.
Korovessis
,
P. G.
, and
Deligianni
,
D. D.
,
2002
, “
Role of Surface Roughness of Titanium Versus Hydroxyapatite on Human Bone Marrow Cells Response
,”
J. Spinal Disord. Tech.
,
15
(
2
), pp.
175
183
.
73.
Fini
,
M.
,
Giardino
,
R.
,
Borsari
,
V.
,
Torricelli
,
P.
,
Rimondini
,
R.
,
Giavaresi
,
G.
, and
Nicoli Aldini
,
N.
,
2003
, “
In Vitro Behavior of Osteoblasts Cultured on Orthopaedic Biomaterials With Different Roughness, Uncoated and Flourohydroxyapatite-Coated, Relative to the In Vivo Osteointegration Rate
,”
Int. J. Artif. Organs
,
26
(
6
), pp.
520
528
.http://www.artificial-organs.com/article/in-vitro-behaviour-of-osteoblasts-cultured-on-orthopaedic-biomaterials-with-different-surface-roughness--uncoated-and-fluorohydroxyapatite-coated--rel-art004266
You do not currently have access to this content.