The ascending thoracic aorta is poorly understood mechanically, especially its risk of dissection. To make better predictions of dissection risk, more information about the multidimensional failure behavior of the tissue is needed, and this information must be incorporated into an appropriate theoretical/computational model. Toward the creation of such a model, uniaxial, equibiaxial, peel, and shear lap tests were performed on healthy porcine ascending aorta samples. Uniaxial and equibiaxial tests showed anisotropy with greater stiffness and strength in the circumferential direction. Shear lap tests showed catastrophic failure at shear stresses (150–200 kPa) much lower than uniaxial tests (750–2500 kPa), consistent with the low peel tension (∼60 mN/mm). A novel multiscale computational model, including both prefailure and failure mechanics of the aorta, was developed. The microstructural part of the model included contributions from a collagen-reinforced elastin sheet and interlamellar connections representing fibrillin and smooth muscle. Components were represented as nonlinear fibers that failed at a critical stretch. Multiscale simulations of the different experiments were performed, and the model, appropriately specified, agreed well with all experimental data, representing a uniquely complete structure-based description of aorta mechanics. In addition, our experiments and model demonstrate the very low strength of the aorta in radial shear, suggesting an important possible mechanism for aortic dissection.

References

References
1.
Mao
,
S. S.
,
Ahmadi
,
N.
,
Shah
,
B.
,
Beckmann
,
D.
,
Chen
,
A.
,
Ngo
,
L.
,
Flores
,
F. R.
,
Gao
,
Y. L.
, and
Budoff
,
M. J.
,
2008
, “
Normal Thoracic Aorta Diameter on Cardiac Computed Tomography in Healthy Asymptomatic Adults: Impact of Age and Gender
,”
Acad. Radiol.
,
15
(
7
), pp.
827
834
.
2.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
, p.
757
.
3.
Gray
,
H.
,
1918
,
Anatomy of the Human Body
,
Lea and Febiger
,
Philadelphia, PA
, p.
1096
.
4.
Dotter
,
C. T.
,
Roberts
,
D. J.
, and
Steinberg
,
I.
,
1950
, “
Aortic Length: Angiocardiographic Measurements
,”
Circulation
,
2
(
6
), pp.
915
920
.
5.
Isselbacher
,
E. M.
,
2005
, “
Thoracic and Abdominal Aortic Aneurysms
,”
Circulation
,
111
(
6
), pp.
816
828
.
6.
Davies
,
R. R.
,
Goldstein
,
L. J.
,
Coady
,
M. A.
,
Tittle
,
S. L.
,
Rizzo
,
J. A.
,
Kopf
,
G. S.
, and
Elefteriades
,
J. A.
,
2002
, “
Yearly Rupture or Dissection Rates for Thoracic Aortic Aneurysms: Simple Prediction Based on Size
,”
Ann. Thorac. Surg.
,
73
(
1
), pp.
17
27
; discussion 27–28.
7.
Davies
,
R. R.
,
Gallo
,
A.
,
Coady
,
M. A.
,
Tellides
,
G.
,
Botta
,
D. M.
,
Burke
,
B.
,
Coe
,
M. P.
,
Kopf
,
G. S.
, and
Elefteriades
,
J. A.
,
2006
, “
Novel Measurement of Relative Aortic Size Predicts Rupture of Thoracic Aortic Aneurysms
,”
Ann. Thorac. Surg.
,
81
(
1
), pp.
169
177
.
8.
Elefteriades
,
J. A.
,
2010
, “
Indications for Aortic Replacement
,”
J. Thorac. Cardiovasc. Surg.
,
140
(
Suppl. 6
), pp.
S5
9
; discussion S45–51.
9.
Pape
,
L. A.
,
Tsai
,
T. T.
,
Isselbacher
,
E. M.
,
Oh
,
J. K.
,
O'gara
,
P. T.
,
Evangelista
,
A.
,
Fattori
,
R.
,
Meinhardt
,
G.
,
Trimarchi
,
S.
,
Bossone
,
E.
,
Suzuki
,
T.
,
Cooper
,
J. V.
,
Froehlich
,
J. B.
,
Nienaber
,
C. A.
, and
Eagle
,
K. A.
, and
International Registry of Acute Aortic Dissection (IRAD) Investigators
,
2007
, “
Aortic Diameter >or = 5.5 Cm Is Not a Good Predictor of Type A Aortic Dissection: Observations From the International Registry of Acute Aortic Dissection (IRAD)
,”
Circulation
,
116
(
10
), pp.
1120
1127
.
10.
Svensson
,
L. G.
,
Kim
,
K. H.
,
Lytle
,
B. W.
, and
Cosgrove
,
D. M.
,
2003
, “
Relationship of Aortic Cross-Sectional Area to Height Ratio and the Risk of Aortic Dissection in Patients With Bicuspid Aortic Valves
,”
J. Thorac. Cardiovasc. Surg.
,
126
(
3
), pp.
892
893
.
11.
Kaiser
,
T.
,
Kellenberger
,
C. J.
,
Albisetti
,
M.
,
Bergstrasser
,
E.
, and
Valsangiacomo Buechel
,
E. R.
,
2008
, “
Normal Values for Aortic Diameters in Children and Adolescents—Assessment in vivo by Contrast-Enhanced CMR-Angiography
,”
J. Cardiovasc. Magn. Reson.
,
10
(
1
), pp.
56
64
.
12.
Berger
,
J. A.
, and
Elefteriades
,
J. A.
,
2012
, “
Toward Uniformity in Reporting of Thoracic Aortic Diameter
,”
Int. J. Angiol.
,
21
(
4
), pp.
243
244
.
13.
Matura
,
L. A.
,
Ho
,
V. B.
,
Rosing
,
D. R.
, and
Bondy
,
C. A.
,
2007
, “
Aortic Dilatation and Dissection in Turner Syndrome
,”
Circulation
,
116
(
15
), pp.
1663
1670
.
14.
Nijs
,
J.
,
Gelsomino
,
S.
,
Luca
,
F.
,
Parise
,
O.
,
Maessen
,
J. G.
, and
Meir
,
M. L.
,
2014
, “
Unreliability of Aortic Size Index to Predict Risk of Aortic Dissection in a Patient With Turner Syndrome
,”
World J. Cardiol.
,
6
(
5
), pp.
349
352
.
15.
Holmes
,
K. W.
,
Maslen
,
C. L.
,
Kindem
,
M.
,
Kroner
,
B. L.
,
Song
,
H. K.
,
Ravekes
,
W.
,
Dietz
,
H. C.
,
Weinsaft
,
J. W.
,
Roman
,
M. J.
,
Devereux
,
R. B.
,
Pyeritz
,
R. E.
,
Bavaria
,
J.
,
Milewski
,
K.
,
Milewicz
,
D.
,
LeMaire
,
S. A.
,
Hendershot
,
T.
,
Eagle
,
K. A.
,
Tolunay
,
H. E.
,
Desvigne-Nickens
,
P.
, and
Silberbach
,
M.
, and
GenTAC Registry Consortium
,
2013
, “
GenTAC Registry Report: Gender Differences Among Individuals With Genetically Triggered Thoracic Aortic Aneurysm and Dissection
,”
Am. J. Med. Genet. Part A
,
161
(
4
), pp.
779
786
.
16.
Etz
,
C. D.
,
Misfeld
,
M.
,
Borger
,
M. A.
,
Luehr
,
M.
,
Strotdrees
,
E.
, and
Mohr
,
F. W.
,
2012
, “
Current Indications for Surgical Repair in Patients With Bicuspid Aortic Valve and Ascending Aortic Ectasia
,”
Cardiol. Res. Pract.
,
2012
, p.
313879
.
17.
Avanzini
,
A.
,
Battini
,
D.
,
Bagozzi
,
L.
, and
Bisleri
,
G.
,
2014
, “
Biomechanical Evaluation of Ascending Aortic Aneurysms
,”
BioMed Res. Int.
,
2014
, p.
820385
.
18.
Vorp
,
D. A.
,
Schiro
,
B. J.
,
Ehrlich
,
M. P.
,
Juvonen
,
T. S.
,
Ergin
,
M. A.
, and
Griffith
,
B. P.
,
2003
, “
Effect of Aneurysm on the Tensile Strength and Biomechanical Behavior of the Ascending Thoracic Aorta
,”
Ann. Thorac. Surg.
,
75
(
4
), pp.
1210
1214
.
19.
Iliopoulos
,
D. C.
,
Kritharis
,
E. P.
,
Giagini
,
A. T.
,
Papadodima
,
S. A.
, and
Sokolis
,
D. P.
,
2009
, “
Ascending Thoracic Aortic Aneurysms Are Associated With Compositional Remodeling and Vessel Stiffening But Not Weakening in Age-Matched Subjects
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
1
), pp.
101
109
.
20.
Pichamuthu
,
J. E.
,
Phillippi
,
J. A.
,
Cleary
,
D. A.
,
Chew
,
D. W.
,
Hempel
,
J.
,
Vorp
,
D. A.
, and
Gleason
,
T. G.
,
2013
, “
Differential Tensile Strength and Collagen Composition in Ascending Aortic Aneurysms by Aortic Valve Phenotype
,”
Ann. Thorac. Surg.
,
96
(
6
), pp.
2147
2154
.
21.
Shah
,
S. B.
,
Witzenburg
,
C.
,
Hadi
,
M. F.
,
Wagner
,
H. P.
,
Goodrich
,
J. M.
,
Alford
,
P. W.
, and
Barocas
,
V. H.
,
2014
, “
Prefailure and Failure Mechanics of the Porcine Ascending Thoracic Aorta: Experiments and a Multiscale Model
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021028
.
22.
Okamoto
,
R. J.
,
Wagenseil
,
J. E.
,
DeLong
,
W. R.
,
Peterson
,
S. J.
,
Kouchoukos
,
N. T.
, and
Sundt
,
T. M.
,3rd
,
2002
, “
Mechanical Properties of Dilated Human Ascending Aorta
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
624
635
.
23.
Azadani
,
A. N.
,
Chitsaz
,
S.
,
Mannion
,
A.
,
Mookhoek
,
A.
,
Wisneski
,
A.
,
Guccione
,
J. M.
,
Hope
,
M. D.
,
Ge
,
L.
, and
Tseng
,
E. E.
,
2013
, “
Biomechanical Properties of Human Ascending Thoracic Aortic Aneurysms
,”
Ann. Thorac. Surg.
,
96
(
1
), pp.
50
58
.
24.
Babu
,
A. R.
,
Byju
,
A. G.
, and
Gundiah
,
N.
,
2015
, “
Biomechanical Properties of Human Ascending Thoracic Aortic Dissections
,”
ASME J. Biomech. Eng.
,
137
(
8
), p.
081013
.
25.
van Baardwijk
,
C.
, and
Roach
,
M. R.
,
1987
, “
Factors in the Propagation of Aortic Dissections in Canine Thoracic Aortas
,”
J. Biomech.
,
20
(
1
), pp.
67
73
.
26.
Sommer
,
G.
,
Gasser
,
T. C.
,
Regitnig
,
P.
,
Auer
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
Dissection Properties of the Human Aortic Media: An Experimental Study
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021007
.
27.
Tong
,
J.
,
Sommer
,
G.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2011
, “
Dissection Properties and Mechanical Strength of Tissue Components in Human Carotid Bifurcations
,”
Ann. Biomed. Eng.
,
39
(
6
), pp.
1703
1719
.
28.
Tsamis
,
A.
,
Pal
,
S.
,
Phillippi
,
J. A.
,
Gleason
,
T. G.
,
Maiti
,
S.
, and
Vorp
,
D. A.
,
2014
, “
Effect of Aneurysm on Biomechanical Properties of Radially-Oriented” Collagen Fibers in Human Ascending Thoracic Aortic Media
,”
J. Biomech.
,
47
(
16
), pp.
3820
3824
.
29.
Kozun
,
M.
,
2016
, “
Delamination Properties of the Human Thoracic Arterial Wall With Early Stage of Atherosclerosis Lesions
,”
J. Theor. Appl. Mech.
,
54
(
1
), pp.
229
238
.
30.
Pasta
,
S.
,
Phillippi
,
J. A.
,
Gleason
,
T. G.
, and
Vorp
,
D. A.
,
2012
, “
Effect of Aneurysm on the Mechanical Dissection Properties of the Human Ascending Thoracic Aorta
,”
J. Thorac. Cardiovasc. Surg.
,
143
(
2
), pp.
460
467
.
31.
ASTM
,
2014
, “
Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding
,” ASTM International, West Conshohocken, PA,
Standard No. D5868-01(2014)
.https://www.astm.org/Standards/D5868.htm
32.
Gregory
,
D. E.
,
Veldhuis
,
J. H.
,
Horst
,
C.
,
Wayne Brodland
,
G.
, and
Callaghan
,
J. P.
,
2011
, “
Novel Lap Test Determines the Mechanics of Delamination Between Annular Lamellae of the Intervertebral Disc
,”
J. Biomech.
,
44
(
1
), pp.
97
102
.
33.
Volokh
,
K. Y.
,
2008
, “
Prediction of Arterial Failure Based on a Microstructural Bi-Layer Fiber-Matrix Model With Softening
,”
J. Biomech.
,
41
(
2
), pp.
447
453
.
34.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2006
, “
Modeling the Propagation of Arterial Dissection
,”
Eur. J. Mech. A
,
25
(
4
), pp.
617
633
.
35.
Ferrara
,
A.
, and
Pandolfi
,
A.
,
2008
, “
Numerical Modelling of Fracture in Human Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
553
567
.
36.
Wang
,
L.
,
Roper
,
S. M.
,
Luo
,
X. Y.
, and
Hill
,
N. A.
,
2015
, “
Modelling of Tear Propagation and Arrest in Fibre-Reinforced Soft Tissue Subject to Internal Pressure
,”
J. Eng. Math.
,
91
(1), pp.
249
265
.
37.
Raghupathy
,
R.
,
Witzenburg
,
C.
,
Lake
,
S. P.
,
Sander
,
E. A.
, and
Barocas
,
V. H.
,
2011
, “
Identification of Regional Mechanical Anisotropy in Soft Tissue Analogs
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
091011
.
38.
Witzenburg
,
C.
,
Raghupathy
,
R.
,
Kren
,
S. M.
,
Taylor
,
D. A.
, and
Barocas
,
V. H.
,
2011
, “
Mechanical Changes in the Rat Right Ventricle With Decellularization
,”
J. Biomech.
,
45
(
5
), pp.
842
849
.
39.
Chandran
,
P. L.
,
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2008
, “
Microstructure-Based, Multiscale Modeling for the Mechanical Behavior of Hydrated Fiber Networks
,”
SIAM J. Multiscale Model. Simul.
,
7
(
1
), pp.
22
43
.
40.
Hadi
,
M. F.
,
Sander
,
E. A.
, and
Barocas
,
V. H.
,
2012
, “
Multiscale Model Predicts Tissue-Level Failure From Collagen Fiber-Level Damage
,”
ASME J. Biomech. Eng.
,
134
(
9
), p.
091005
.
41.
Hadi
,
M. F.
, and
Barocas
,
V. H.
,
2013
, “
Microscale Fiber Network Alignment Affects Macroscale Failure Behavior in Simulated Collagen Tissue Analogs
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021026
.
42.
Lake
,
S. P.
,
Hadi
,
M. F.
,
Lai
,
V. K.
, and
Barocas
,
V. H.
,
2012
, “
Mechanics of a Fiber Network Within a Non-Fibrillar Matrix: Model and Comparison With Collagen-Agarose Co-Gels
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2111
2121
.
43.
Lai
,
V. K.
,
Lake
,
S. P.
,
Frey
,
C. R.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2012
, “
Mechanical Behavior of Collagen-Fibrin Co-Gels Reflects Transition From Series to Parallel Interactions With Increasing Collagen Content
,”
ASME J. Biomech. Eng.
,
134
(1), p.
011004
.
44.
Chandran
,
P. L.
, and
Barocas
,
V. H.
,
2007
, “
Deterministic Material-Based Averaging Theory Model of Collagen Gel Micromechanics
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
137
147
.
45.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp—Part II: A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
327
335
.
46.
Driessen
,
N. J. B.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
,
2005
, “
A Structural Constitutive Model for Collagenous Cardiovascular Tissues Incorporating the Angular Fiber Distribution
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
494
503
.
47.
Clark
,
J. M.
, and
Glagov
,
S.
,
1985
, “
Transmural Organization of the Arterial Media: The Lamellar Unit Revisited
,”
Arteriosclerosis
,
5
(
1
), pp.
19
34
.
48.
Tonar
,
Z.
,
Kubíková
,
T.
,
Prior
,
C.
,
Demjén
,
E.
,
Liška
,
V.
,
Králíčková
,
M.
, and
Witter
,
K.
,
2015
, “
Segmental and Age Differences in the Elastin Network, Collagen, and Smooth Muscle Phenotype in the Tunica Media of the Porcine Aorta
,”
Ann. Anat.
,
201
, pp.
79
90
.
49.
Snowhill
,
P. B.
,
Foran
,
D. J.
, and
Silver
,
F. H.
,
2004
, “
A Mechanical Model of Porcine Vascular Tissues—Part I: Determination of Macromolecular Component Arrangement and Volume Fractions
,”
Cardiovasc. Eng.
,
4
(
4
), p.
281
.
50.
Timmins
,
L. H.
,
Wu
,
Q.
,
Yeh
,
A. T.
,
Moore
,
J. E.
, Jr.
, and
Greenwald
,
S. E.
,
2010
, “
Structural Inhomogeneity and Fiber Orientation in the Inner Arterial Media
,”
Am. J. Physiol. Heart Circ. Physiol.
,
298
(
5
), pp.
H1537
1545
.
51.
Sokolis
,
D. P.
,
Boudoulas
,
H.
, and
Karayannacos
,
P. E.
,
2008
, “
Segmental Differences of Aortic Function and Composition: Clinical Implications
,”
Hell. J. Cardiol.
,
49
(
3
), pp.
145
154
.http://www.hellenicjcardiol.org/archive/full_text/2008/3/2008_3_145.pdf
52.
Dobrin
,
P. B.
,
1978
, “
Mechanical Properties of Arteries
,”
Physiol. Rev.
,
58
(
2
), pp.
397
460
.http://physrev.physiology.org/content/58/2/397.full-text.pdf+html
53.
MacLean
,
N. F.
,
Dudek
,
N. L.
, and
Roach
,
M. R.
,
1999
, “
The Role of Radial Elastic Properties in the Development of Aortic Dissections
,”
J. Vasc. Surg.
,
29
(
4
), pp.
703
710
.
54.
Dingemans
,
K. P.
,
Teeling
,
P.
,
Lagendijk
,
J. H.
, and
Becker
,
A. E.
,
2000
, “
Extracellular Matrix of the Human Aortic Media: An Ultrastructural Histochemical and Immunohistochemical Study of the Adult Aortic Media
,”
Anat. Rec.
,
258
(
1
), pp.
1
14
.
55.
Humphrey
,
J. D.
,
1995
, “
Mechanics of the Arterial Wall: Review and Directions
,”
Crit. Rev. Biomed. Eng.
,
23
(
1–2
), pp.
1
162
.
56.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2003
, “
A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow
,”
Biomech. Model. Mechanobiol.
,
2
(
2
), pp.
109
126
.
57.
Alford
,
P. W.
, and
Taber
,
L. A.
,
2008
, “
Computational Study of Growth and Remodelling in the Aortic Arch
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
525
538
.
58.
Alford
,
P. W.
,
Humphrey
,
J. D.
, and
Taber
,
L. A.
,
2008
, “
Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
245
262
.
59.
Gleason
,
R. L.
,
Taber
,
L. A.
, and
Humphrey
,
J. D.
,
2004
, “
A 2-D Model of Flow-Induced Alterations in the Geometry, Structure, and Properties of Carotid Arteries
,”
ASME J. Biomech. Eng.
,
126
(
3
), pp.
371
381
.
60.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2007
, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
611
618
.
61.
Pal
,
S.
,
Tsamis
,
A.
,
Pasta
,
S.
,
D'Amore
,
A.
,
Gleason
,
T. G.
,
Vorp
,
D. A.
, and
Maiti
,
S.
,
2014
, “
A Mechanistic Model on the Role of “Radially-Running” Collagen Fibers on Dissection Properties of Human Ascending Thoracic Aorta
,”
J. Biomech.
,
47
(
5
), pp.
981
988
.
62.
Wisneski
,
A. D.
,
Mookhoek
,
A.
,
Chitsaz
,
S.
,
Hope
,
M. D.
,
Guccione
,
J. M.
,
Ge
,
L.
, and
Tseng
,
E. E.
,
2014
, “
Patient-Specific Finite Element Analysis of Ascending Thoracic Aortic Aneurysm
,”
J. Heart Valve Dis.
,
23
(
6
), pp.
765
772
.
63.
Krishnan
,
K.
,
Ge
,
L.
,
Haraldsson
,
H.
,
Hope
,
M. D.
,
Saloner
,
D. A.
,
Guccione
,
J. M.
, and
Tseng
,
E. E.
,
2015
, “
Ascending Thoracic Aortic Aneurysm Wall Stress Analysis Using Patient-Specific Finite Element Modeling of in vivo Magnetic Resonance Imaging Dagger
,”
Interact. Cardiovasc. Thorac. Surg.
,
21
(
4
), pp.
471
480
.
64.
Trabelsi
,
O.
,
Davis
,
F. M.
,
Rodriguez-Matas
,
J. F.
,
Duprey
,
A.
, and
Avril
,
S.
,
2015
, “
Patient Specific Stress and Rupture Analysis of Ascending Thoracic Aneurysms
,”
J. Biomech.
,
48
(
10
), pp.
1836
1843
.
65.
Martin
,
C.
,
Sun
,
W.
, and
Elefteriades
,
J.
,
2015
, “
Patient-Specific Finite Element Analysis of Ascending Aorta Aneurysms
,”
Am. J. Physiol. Heart Circ. Physiol.
,
308
(
10
), pp.
H1306
16
.
66.
Martufi
,
G.
,
Gasser
,
T. C.
,
Appoo
,
J. J.
, and
Di Martino
,
E. S.
,
2014
, “
Mechano-Biology in the Thoracic Aortic Aneurysm: A Review and Case Study
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
917
928
.
67.
Koch
,
R. G.
,
Tsamis
,
A.
,
D'Amore
,
A.
,
Wagner
,
W. R.
,
Watkins
,
S. C.
,
Gleason
,
T. G.
, and
Vorp
,
D. A.
,
2014
, “
" Custom Image-Based Analysis Tool for Quantifying Elastin and Collagen Micro-Architecture in the Wall of the Human Aorta From Multi-Photon Microscopy
,”
J. Biomech.
,
47
(
5
), pp.
935
943
.
68.
Tsamis
,
A.
,
Phillippi
,
J. A.
,
Koch
,
R. G.
,
Pasta
,
S.
,
D'Amore
,
A.
,
Watkins
,
S. C.
,
Wagner
,
W. R.
,
Gleason
,
T. G.
, and
Vorp
,
D. A.
,
2013
, “
Fiber Micro-Architecture in the Longitudinal-Radial and Circumferential-Radial Planes of Ascending Thoracic Aortic Aneurysm Media
,”
J. Biomech.
,
46
(
16
), pp.
2787
2794
.
69.
Todorovich-Hunter
,
L.
,
Johnson
,
D. J.
,
Ranger
,
P.
,
Keeley
,
F. W.
, and
Rabinovitch
,
M.
,
1988
, “
Altered Elastin and Collagen Synthesis Associated With Progressive Pulmonary Hypertension Induced by Monocrotaline: A Biochemical and Ultrastructural Study
,”
Lab. Invest.
,
58
(
2
), pp.
184
195
.https://www.ncbi.nlm.nih.gov/pubmed/3123799
70.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
,
2004
, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
J. Biomech.
,
37
(
7
), pp.
989
1000
.
71.
Haskett
,
D.
,
Speicher
,
E.
,
Fouts
,
M.
,
Larson
,
D.
,
Azhar
,
M.
,
Utzinger
,
U.
, and
Vande Geest
,
J.
,
2012
, “
The Effects of Angiotensin II on the Coupled Microstructural and Biomechanical Response of C57BL/6 Mouse Aorta
,”
J. Biomech.
,
45
(
5
), pp.
772
779
.
You do not currently have access to this content.