In this work, the biomechanical responses of the optic nerve head (ONH) to acute elevations in intracranial pressure (ICP) were systematically investigated through numerical modeling. An orthogonal experimental design was developed to quantify the influence of ten input factors that govern the anatomy and material properties of the ONH on the peak maximum principal strain (MPS) in the lamina cribrosa (LC) and postlaminar neural tissue (PLNT). Results showed that the sensitivity of ONH responses to various input factors was region-specific. In the LC, the peak MPS was most strongly dependent on the sclera thickness, LC modulus, and scleral canal size, whereas in the PLNT, the peak MPS was more sensitive to the scleral canal size, neural tissue modulus, and pia mater modulus. The enforcement of clinically relevant ICP in the retro-orbital subarachnoid space influenced the sensitivity analysis. It also induced much larger strains in the PLNT than in the LC. Moreover, acute elevation of ICP leads to dramatic strain distribution changes in the PLNT, but had minimal impact on the LC. This work could help to better understand patient-specific responses, to provide guidance on biomechanical factors resulting in optic nerve diseases, such as glaucoma, papilledema, and ischemic optic neuropathy, and to illuminate the possibilities for exploiting their potential to treat and prevent ONH diseases.

References

References
1.
Quigley
,
H. A.
, and
Broman
,
A. T.
,
2006
, “
The Number of People With Glaucoma Worldwide in 2010 and 2020
,”
Br. J. Ophthalmol.
,
90
(
3
), pp.
262
267
.
2.
Hattar
,
S.
,
Liao
,
H.-W.
,
Takao
,
M.
,
Berson
,
D. M.
, and
Yau
,
K.-W.
,
2002
, “
Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity
,”
Science
,
295
(
5557
), pp.
1065
1070
.
3.
Morgan
,
W. H.
,
Yu
,
D.-Y.
,
Cooper
,
R. L.
,
Alder
,
V. A.
,
Cringle
,
S. J.
, and
Constable
,
I. J.
,
1995
, “
The Influence of Cerebrospinal Fluid Pressure on the Lamina Cribrosa Tissue Pressure Gradient
,”
Invest. Ophthalmol. Visual Sci.
,
36
, pp.
1163
1172
.
4.
Morgan
,
W. H.
,
Yu
,
D.-Y.
,
Alder
,
V. A.
,
Cringle
,
S. J.
,
Cooper
,
R. L.
,
House
,
P. H.
, and
Constable
,
I. J.
,
1998
, “
The Correlation Between Cerebrospinal Fluid Pressure and Retrolaminar Tissue Pressure
,”
Invest. Ophthalmol. Visual Sci.
,
39
, pp.
1419
1428
.
5.
Berdahl
,
J. P.
,
Allingham
,
R. R.
, and
Johnson
,
D. H.
,
2008
, “
Cerebrospinal Fluid Pressure Is Decreased in Primary Open-Angle Glaucoma
,”
Ophthalmology
,
115
(
5
), pp.
763
768
.
6.
Taibbi
,
G.
,
Cromwell
,
R. L.
,
Kapoor
,
K. G.
,
Godley
,
B. F.
, and
Vizzeri
,
G.
,
2013
, “
The Effect of Microgravity on Ocular Structures and Visual Function: A Review
,”
Surv. Ophthalmol.
,
58
(
2
), pp.
155
163
.
7.
Pang
,
J.-J.
,
Frankfort
,
B. J.
,
Gross
,
R. L.
, and
Wu
,
S. M.
,
2015
, “
Elevated Intraocular Pressure Decreases Response Sensitivity of Inner Retinal Neurons in Experimental Glaucoma Mice
,”
Proc. Natl. Acad. Sci.
,
112
(
8
), pp.
2593
2598
.
8.
Yang
,
H.
,
Downs
,
J. C.
,
Sigal
,
I. A.
,
Roberts
,
M. D.
,
Thompson
,
H.
, and
Burgoyne
,
C. F.
,
2009
, “
Deformation of the Normal Monkey Optic Nerve Head Connective Tissue Following Acute IOP Elevation Within 3-D Histomorphometric Reconstructions
,”
Invest. Ophthalmol. Visual Sci.
,
50
(
12
), pp.
5785
5799
.
9.
Lee
,
D. S.
,
Lee
,
E. J.
,
Kim
,
T.-W.
,
Park
,
Y. H.
,
Kim
,
J.
,
Lee
,
J. W.
, and
Kim
,
S.
,
2015
, “
Influence of Translaminar Pressure Dynamics on the Position of the Anterior Lamina Cribrosa Surface Translaminar Pressure Dynamics and LC Position
,”
Invest. Ophthalmol. Visual Sci.
,
56
(
5
), pp.
2833
2841
.
10.
Feola
,
A. J.
,
Myers
,
J. G.
,
Raykin
,
J.
,
Mulugeta
,
L.
,
Nelson
,
E. S.
,
Samuels
,
B. C.
, and
Ethier
,
C. R.
,
2016
, “
Finite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure ICP Affects ONH Deformation
,”
Invest. Ophthalmol. Visual Sci.
,
57
(
4
), pp.
1901
1911
.
11.
Fazio
,
M. A.
,
Grytz
,
R.
,
Morris
,
J. S.
,
Bruno
,
L.
,
Gardiner
,
S. K.
,
Girkin
,
C. A.
, and
Downs
,
J. C.
,
2014
, “
Age-Related Changes in Human Peripapillary Scleral Strain
,”
Biomech. Model Mechanobiol.
,
13
(
3
), pp.
551
563
.
12.
Burgoyne
,
C. F.
,
Downs
,
J. C.
,
Bellezza
,
A. J.
,
Suh
,
J.-K. F.
, and
Hart
,
R. T.
,
2005
, “
The Optic Nerve Head as a Biomechanical Structure: A New Paradigm for Understanding the Role of IOP-Related Stress and Strain in the Pathophysiology of Glaucomatous Optic Nerve Head Damage
,”
Prog. Retinal Eye Res.
,
24
(
1
), pp.
39
73
.
13.
Mi
,
X.-S.
,
Yuan
,
T.-F.
, and
So
,
K.-F.
,
2014
, “
The Current Research Status of Normal Tension Glaucoma
,”
Clin. Interventions Aging
,
2014
(9), pp.
1563
1571
.
14.
Ren
,
R.
,
Wang
,
N.
,
Zhang
,
X.
,
Tian
,
G.
, and
Jonas
,
J. B.
,
2012
, “
Cerebrospinal Fluid Pressure Correlated With Body Mass Index
,”
Graefe's Arch. Clin. Exp. Ophthalmol.
,
250
(
3
), pp.
445
446
.
15.
Sigal
,
I. A.
,
Flanagan
,
J. G.
,
Tertinegg
,
I.
, and
Ethier
,
C. R.
,
2004
, “
Finite Element Modeling of Optic Nerve Head Biomechanics
,”
Invest. Ophthalmol. Visual Sci.
,
45
(
12
), pp.
4378
4387
.
16.
Siaudvytyte
,
L.
,
Januleviciene
,
I.
,
Ragauskas
,
A.
,
Bartusis
,
L.
,
Siesky
,
B.
, and
Harris
,
A.
,
2015
, “
Update in Intracranial Pressure Evaluation Methods and Translaminar Pressure Gradient Role in Glaucoma
,”
Acta Ophthalmol.
,
93
(
1
), pp.
9
15
.
17.
Killer
,
H.
,
Laeng
,
H.
,
Flammer
,
J.
, and
Groscurth
,
P.
,
2003
, “
Architecture of Arachnoid Trabeculae, Pillars, and Septa in the Subarachnoid Space of the Human Optic Nerve: Anatomy and Clinical Considerations
,”
Br. J. Ophthalmol.
,
87
(
6
), pp.
777
781
.
18.
Balaratnasingam
,
C.
,
Morgan
,
W. H.
,
Johnstone
,
V.
,
Pandav
,
S. S.
,
Cringle
,
S. J.
, and
Yu
,
D.-Y.
,
2009
, “
Histomorphometric Measurements in Human and Dog Optic Nerve and an Estimation of Optic Nerve Pressure Gradients in Human
,”
Exp. Eye Res.
,
89
(
5
), pp.
618
628
.
19.
Reina
,
M. A.
,
Casasola
,
O. D. L.
,
López
,
A.
,
De Andrés
,
J. A.
,
Mora
,
M.
, and
Fernández
,
A.
,
2002
, “
The Origin of the Spinal Subdural Space: Ultrastructure Findings
,”
Anesth. Analg.
,
94
(
4
), pp.
991
995
.
20.
Barraglioli
,
J.
, and
Kamm
,
R.
,
1984
, “
Measurements of the Compressive Properties of Scleral Tissue
,”
Invest. Ophthalmol. Visual Sci.
,
25
, pp.
59
65
.http://iovs.arvojournals.org/article.aspx?articleid=2159718
21.
Woo
,
S.-Y.
,
Kobayashi
,
A.
,
Schlegel
,
W.
, and
Lawrence
,
C.
,
1972
, “
Nonlinear Material Properties of Intact Cornea and Sclera
,”
Exp. Eye Res.
,
14
(
1
), pp.
29
39
.
22.
Jones
,
I.
,
Warner
,
M.
, and
Stevens
,
J.
,
1992
, “
Mathematical Modelling of the Elastic Properties of Retina: A Determination of Young's Modulus
,”
Eye
,
6
(
6
), pp.
556
559
.
23.
Ozawa
,
H.
,
Matsumoto
,
T.
,
Ohashi
,
T.
,
Sato
,
M.
, and
Kokubun
,
S.
,
2004
, “
Mechanical Properties and Function of the Spinal Pia Mater
,”
J. Neurosurg. Spine
,
1
(
1
), pp.
122
127
.
24.
Chafi
,
M.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2010
, “
Biomechanical Assessment of Brain Dynamic Responses Due to Blast Pressure Waves
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
490
504
.
25.
Kleiven
,
S.
,
2007
, “
Predictors for Traumatic Brain Injuries Evaluated Through Accident Reconstructions
,”
Stapp Car Crash J.
,
51
, pp.
81
114
.
26.
Goetz
,
C. G.
,
2007
,
Textbook of Clinical Neurology
,
Elsevier Health Sciences
, Atlanta, GA.
27.
Berdahl
,
J. P.
,
Fautsch
,
M. P.
,
Stinnett
,
S. S.
, and
Allingham
,
R. R.
,
2008
, “
Intracranial Pressure in Primary Open Angle Glaucoma, Normal Tension Glaucoma, and Ocular Hypertension: A Case-Control Study
,”
Invest. Ophthalmol Visual Sci.
,
49
(
12
), pp.
5412
5418
.
28.
Perry
,
R. B.
, and
Rose
,
J. C.
,
1958
, “
The Clinical Measurement of Retinal Arterial Pressure
,”
Circulation
,
18
(
5
), pp.
864
870
.
29.
Taguchi
,
G.
,
1986
,
Introduction to Quality Engineering: Designing Quality Into Products and Processes
, Quality Resources, Tokyo, Japan.
30.
Taguchi
,
G.
, and
Taguchi
,
G.
,
1987
,
System of Experimental Design; Engineering Methods to Optimize Quality and Minimize Costs
, UNIPUB/Kraus International Publications, White Plains, NY.
31.
Dey
,
A.
,
1985
,
Orthogonal Fractional Factorial Designs
,
Wiley
,
New York
.
32.
Sigal
,
I. A.
,
Flanagan
,
J. G.
, and
Ethier
,
C. R.
,
2005
, “
Factors Influencing Optic Nerve Head Biomechanics
,”
Invest. Ophthalmol. Visual Sci.
,
46
(
11
), pp.
4189
4199
.
33.
Roy
,
R. K.
,
2010
,
A Primer on the Taguchi Method
,
Society of Manufacturing Engineers
, Dearborn, MI.
34.
Keppel
,
G.
,
1991
,
Design and Analysis: A Researcher's Handbook
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
35.
Mao
,
H.
,
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2006
, “
Application of a Finite Element Model of the Brain to Study Traumatic Brain Injury Mechanisms in the Rat
,”
Stapp Car Crash J.
,
50
, pp.
583
600
.
36.
Coudrillier
,
B.
,
Boote
,
C.
,
Quigley
,
H. A.
, and
Nguyen
,
T. D.
,
2013
, “
Scleral Anisotropy and Its Effects on the Mechanical Response of the Optic Nerve Head
,”
Biomech. Model Mechanabiol.
,
12
(
5
), pp.
941
963
.
37.
Downs
,
J. C.
,
Suh
,
J.
,
Thomas
,
K. A.
,
Bellezza
,
A. J.
,
Hart
,
R. T.
, and
Burgoyne
,
C. F.
,
2005
, “
Viscoelastic Material Properties of the Peripapillary Sclera in Normal and Early-Glaucoma Monkey Eyes
,”
Invest. Ophthalmol. Visual Sci.
,
46
(
2
), pp.
540
546
.
38.
Grytz
,
R.
,
Sigal
,
I. A.
,
Ruberti
,
J. W.
,
Meschke
,
G.
, and
Downs
,
J. C.
,
2012
, “
Lamina Cribrosa Thickening in Early Glaucoma Predicted by a Microstructure Motivated Growth and Remodeling Approach
,”
Mech. Mater.
,
44
, pp.
99
109
.
39.
Kim
,
T.-W.
,
Kagemann
,
L.
,
Girard
,
M. J.
,
Strouthidis
,
N. G.
,
Sung
,
K. R.
,
Leung
,
C. K.
,
Schuman
,
J. S.
, and
Wollstein
,
G.
,
2013
, “
Imaging of the Lamina Cribrosa in Glaucoma: Perspectives of Pathogenesis and Clinical Applications
,”
Current Eye Res.
,
38
(
9
), pp.
903
909
.
40.
Hernandez
,
M. R.
,
2000
, “
The Optic Nerve Head in Glaucoma: Role of Astrocytes in Tissue Remodeling
,”
Prog. Retinal Eye Res.
,
19
(
3
), pp.
297
321
.
You do not currently have access to this content.