Diarthrodial joint function is mediated by a complex interaction between bones, ligaments, capsules, articular cartilage, and muscles. To gain a better understanding of injury mechanisms and to improve surgical procedures, an improved understanding of the structure and function of diarthrodial joints needs to be obtained. Thus, robotic testing systems have been developed to measure the resulting kinematics of diarthrodial joints as well as the in situ forces in ligaments and their replacement grafts in response to external loading conditions. These six degrees-of-freedom (DOF) testing systems can be controlled in either position or force modes to simulate physiological loading conditions or clinical exams. Recent advances allow kinematic, in situ force, and strain data to be measured continuously throughout the range of joint motion using velocity-impedance control, and in vivo kinematic data to be reproduced on cadaveric specimens to determine in situ forces during physiologic motions. The principle of superposition can also be used to determine the in situ forces carried by capsular tissue in the longitudinal direction after separation from the rest of the capsule as well as the interaction forces with the surrounding tissue. Finally, robotic testing systems can be used to simulate soft tissue injury mechanisms, and computational models can be validated using the kinematic and force data to help predict in vivo stresses and strains present in these tissues. The goal of these analyses is to help improve surgical repair procedures and postoperative rehabilitation protocols. In the future, more information is needed regarding the complex in vivo loads applied to diarthrodial joints during clinical exams and activities of daily living to serve as input to the robotic testing systems. Improving the capability to accurately reproduce in vivo kinematics with robotic testing systems should also be examined.

References

References
1.
Frobell
,
R. B.
,
Lohmander
,
L. S.
, and
Roos
,
H. P.
,
2007
, “
Acute Rotational Trauma to the Knee: Poor Agreement Between Clinical Assessment and Magnetic Resonance Imaging Findings
,”
Scand. J. Med. Sci. Sports
,
17
(
2
), pp.
109
114
.
2.
Gottlob
,
C. A.
,
Baker
,
C. L.
, Jr.
,
Pellissier
,
J. M.
, and
Colvin
,
L.
,
1999
, “
Cost Effectiveness of Anterior Cruciate Ligament Reconstruction in Young Adults
,”
Clin. Orthop. Relat. Res.
,
367
, pp.
272
282
.
3.
Leininger
,
R. E.
,
Knox
,
C. L.
, and
Comstock
,
R. D.
,
2007
, “
Epidemiology of 1.6 Million Pediatric Soccer-Related Injuries Presenting to US Emergency Departments From 1990 to 2003
,”
Am. J. Sports Med.
,
35
(
2
), pp.
288
293
.
4.
Nordenvall
,
R.
,
Bahmanyar
,
S.
,
Adami
,
J.
,
Stenros
,
C.
,
Wredmark
,
T.
, and
Fellander-Tsai
,
L.
,
2012
, “
A Population-Based Nationwide Study of Cruciate Ligament Injury in Sweden, 2001–2009: Incidence, Treatment, and Sex Differences
,”
Am. J. Sports Med.
,
40
(
8
), pp.
1808
1813
.
5.
Mather
,
R. C.
, 3rd
,
Koenig
,
L.
,
Kocher
,
M. S.
,
Dall
,
T. M.
,
Gallo
,
P.
,
Scott
,
D. J.
,
Bach
,
B. R.
, Jr.
, and
Spindler
,
K. P.
,
2013
, “
Societal and Economic Impact of Anterior Cruciate Ligament Tears
,”
J. Bone Jt. Surg.
,
95
(
19
), pp.
1751
1759
.
6.
Colombet
,
P.
,
Robinson
,
J.
,
Christel
,
P.
,
Franceschi
,
J. P.
, and
Djian
,
P.
,
2007
, “
Using Navigation to Measure Rotation Kinematics During ACL Reconstruction
,”
Clin. Orthop. Relat. Res.
,
454
, pp.
59
65
.
7.
Murray
,
P. J.
,
Alexander
,
J. W.
,
Gold
,
J. E.
,
Icenogle
,
K. D.
,
Noble
,
P. C.
, and
Lowe
,
W. R.
,
2010
, “
Anatomic Double-Bundle Anterior Cruciate Ligament Reconstruction: Kinematics and Knee Flexion Angle-Graft Tension Relation
,”
Arthroscopy
,
26
(
2
), pp.
202
213
.
8.
Yoo
,
J. D.
,
Papannagari
,
R.
,
Park
,
S. E.
,
DeFrate
,
L. E.
,
Gill
,
T. J.
, and
Li
,
G.
,
2005
, “
The Effect of Anterior Cruciate Ligament Reconstruction on Knee Joint Kinematics Under Simulated Muscle Loads
,”
Am. J. Sports Med.
,
33
(
2
), pp.
240
246
.
9.
Debski
,
R. E.
,
Parsons
,
I. M. T.
,
Woo
,
S. L.
, and
Fu
,
F. H.
,
2001
, “
Effect of Capsular Injury on Acromioclavicular Joint Mechanics
,”
J. Bone Jt. Surg.
,
83
(
9
), pp.
1344
1351
.
10.
Debski
,
R. E.
,
Sakone
,
M.
,
Woo
,
S. L.
,
Wong
,
E. K.
,
Fu
,
F. H.
, and
Warner
,
J. J.
,
1999
, “
Contribution of the Passive Properties of the Rotator Cuff to Glenohumeral Stability During Anterior-Posterior Loading
,”
J. Shoulder Elbow Surg.
,
8
(
4
), pp.
324
329
.
11.
Debski
,
R. E.
,
Wong
,
E. K.
,
Woo
,
S. L.
,
Sakane
,
M.
,
Fu
,
F. H.
, and
Warner
,
J. J.
,
1999
, “
In Situ Force Distribution in the Glenohumeral Joint Capsule During Anterior-Posterior Loading
,”
J. Orthop. Res.
,
17
(
5
), pp.
769
776
.
12.
Fujie
,
H.
,
Mabuchi
,
K.
,
Woo
,
S. L.
,
Livesay
,
G. A.
,
Arai
,
S.
, and
Tsukamoto
,
Y.
,
1993
, “
The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology
,”
ASME J. Biomech. Eng.
,
115
(
3
), pp.
211
217
.
13.
Fujie
,
H.
,
Otsubo
,
H.
,
Fukano
,
S.
,
Suzuki
,
T.
,
Suzuki
,
D.
,
Mae
,
T.
, and
Shino
,
K.
,
2011
, “
Mechanical Functions of the Three Bundles Consisting of the Human Anterior Cruciate Ligament
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
19
(
Suppl. 1
), pp.
S47
S53
.
14.
Lenschow
,
S.
,
Zantop
,
T.
,
Weimann
,
A.
,
Lemburg
,
T.
,
Raschke
,
M.
,
Strobel
,
M.
, and
Petersen
,
W.
,
2006
, “
Joint Kinematics and In Situ Forces After Single Bundle PCL Reconstruction: A Graft Placed at the Center of the Femoral Attachment Does Not Restore Normal Posterior Laxity
,”
Arch. Orthop. Trauma Surg.
,
126
(
4
), pp.
253
259
.
15.
Mae
,
T.
,
Shino
,
K.
,
Nakata
,
K.
,
Toritsuka
,
Y.
,
Otsubo
,
H.
, and
Fujie
,
H.
,
2008
, “
Optimization of Graft Fixation at the Time of Anterior Cruciate Ligament Reconstruction—Part II: Effect of Knee Flexion Angle
,”
Am. J. Sports Med.
,
36
(
6
), pp.
1094
1100
.
16.
Most
,
E.
,
Axe
,
J.
,
Rubash
,
H.
, and
Li
,
G.
,
2004
, “
Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes
,”
J. Biomech.
,
37
(
11
), pp.
1743
1748
.
17.
Musahl
,
V.
,
Plakseychuk
,
A.
,
VanScyoc
,
A.
,
Sasaki
,
T.
,
Debski
,
R. E.
,
McMahon
,
P. J.
, and
Fu
,
F. H.
,
2005
, “
Varying Femoral Tunnels Between the Anatomical Footprint and Isometric Positions: Effect on Kinematics of the Anterior Cruciate Ligament-Reconstructed Knee
,”
Am. J. Sports Med.
,
33
(
5
), pp.
712
718
.
18.
Rudy
,
T. W.
,
Livesay
,
G. A.
,
Woo
,
S. L.
, and
Fu
,
F. H.
,
1996
, “
A Combined Robotic/Universal Force Sensor Approach to Determine In Situ Forces of Knee Ligaments
,”
J. Biomech.
,
29
(
10
), pp.
1357
1360
.
19.
Woo
,
S. L.
,
Debski
,
R. E.
,
Wong
,
E. K.
,
Yagi
,
M.
, and
Tarinelli
,
D.
,
1999
, “
Use of Robotic Technology for Diarthrodial Joint Research
,”
J. Sci. Med. Sport
,
2
(
4
), pp.
283
297
.
20.
Woo
,
S. L.
, and
Fisher
,
M. B.
,
2009
, “
Evaluation of Knee Stability With Use of a Robotic System
,”
J. Bone Jt. Surg.
,
91
(
Suppl. 1
), pp.
78
84
.
21.
Woo
,
S. L.
,
Kanamori
,
A.
,
Zeminski
,
J.
,
Yagi
,
M.
,
Papageorgiou
,
C.
, and
Fu
,
F. H.
,
2002
, “
The Effectiveness of Reconstruction of the Anterior Cruciate Ligament With Hamstrings and Patellar Tendon. A Cadaveric Study Comparing Anterior Tibial and Rotational Loads
,”
J. Bone Jt. Surg.
,
84
(
6
), pp.
907
914
.
22.
Zantop
,
T.
,
Lenschow
,
S.
,
Lemburg
,
T.
,
Weimann
,
A.
, and
Petersen
,
W.
,
2004
, “
Soft-Tissue Graft Fixation in Posterior Cruciate Ligament Reconstruction: Evaluation of the Effect of Tibial Insertion Site on Joint Kinematics and In Situ Forces Using a Robotic/UFS Testing System
,”
Arch. Orthop. Trauma Surg.
,
124
(
9
), pp.
614
620
.
23.
Gill
,
T. J.
,
DeFrate
,
L. E.
,
Wang
,
C.
,
Carey
,
C. T.
,
Zayontz
,
S.
,
Zarins
,
B.
, and
Li
,
G.
,
2003
, “
The Biomechanical Effect of Posterior Cruciate Ligament Reconstruction on Knee Joint Function. Kinematic Response to Simulated Muscle Loads
,”
Am. J. Sports Med.
,
31
(
4
), pp.
530
536
.
24.
Gill
,
T. J.
,
DeFrate
,
L. E.
,
Wang
,
C.
,
Carey
,
C. T.
,
Zayontz
,
S.
,
Zarins
,
B.
, and
Li
,
G.
,
2004
, “
The Effect of Posterior Cruciate Ligament Reconstruction on Patellofemoral Contact Pressures in the Knee Joint Under Simulated Muscle Loads
,”
Am. J. Sports Med.
,
32
(
1
), pp.
109
115
.
25.
Li
,
G.
,
DeFrate
,
L. E.
,
Zayontz
,
S.
,
Park
,
S. E.
, and
Gill
,
T. J.
,
2004
, “
The Effect of Tibiofemoral Joint Kinematics on Patellofemoral Contact Pressures Under Simulated Muscle Loads
,”
J. Orthop. Res.
,
22
(
4
), pp.
801
806
.
26.
Li
,
G.
,
Most
,
E.
,
Sultan
,
P. G.
,
Schule
,
S.
,
Zayontz
,
S.
,
Park
,
S. E.
, and
Rubash
,
H. E.
,
2004
, “
Knee Kinematics With a High-Flexion Posterior Stabilized Total Knee Prosthesis: An In Vitro Robotic Experimental Investigation
,”
J. Bone Jt. Surg.
,
86
(
8
), pp.
1721
1729
.
27.
Li
,
G.
,
Rudy
,
T. W.
,
Sakane
,
M.
,
Kanamori
,
A.
,
Ma
,
C. B.
, and
Woo
,
S. L.
,
1999
, “
The Importance of Quadriceps and Hamstring Muscle Loading on Knee Kinematics and In-Situ Forces in the ACL
,”
J. Biomech.
,
32
(
4
), pp.
395
400
.
28.
Li
,
G.
,
Suggs
,
J.
, and
Gill
,
T.
,
2002
, “
The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function Under a Simulated Muscle Load: A Three-Dimensional Computational Simulation
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
713
720
.
29.
Markolf
,
K. L.
,
O'Neill
,
G.
,
Jackson
,
S. R.
, and
McAllister
,
D. R.
,
2004
, “
Effects of Applied Quadriceps and Hamstrings Muscle Loads on Forces in the Anterior and Posterior Cruciate Ligaments
,”
Am. J. Sports Med.
,
32
(
5
), pp.
1144
1149
.
30.
Fujie
,
H.
,
Livesay
,
G. A.
,
Woo
,
S. L.
,
Kashiwaguchi
,
S.
, and
Blomstrom
,
G.
,
1995
, “
The Use of a Universal Force-Moment Sensor to Determine In-Situ Forces in Ligaments: A New Methodology
,”
ASME J. Biomech. Eng.
,
117
(
1
), pp.
1
7
.
31.
Fujie
,
H.
,
Sekito
,
T.
, and
Orita
,
A.
,
2004
, “
A Novel Robotic System for Joint Biomechanical Tests: Application to the Human Knee Joint
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
54
61
.
32.
Gilbertson
,
L. G.
,
Doehring
,
T. C.
,
Livesay
,
G. A.
,
Rudy
,
T. W.
,
Kang
,
J. D.
, and
Woo
,
S. L.
,
1999
, “
Improvement of Accuracy in a High-Capacity, Six Degree-of-Freedom Load Cell: Application to Robotic Testing of Musculoskeletal Joints
,”
Ann. Biomed. Eng.
,
27
(
6
), pp.
839
843
.
33.
Woo
,
S. L.
,
Wu
,
C.
,
Dede
,
O.
,
Vercillo
,
F.
, and
Noorani
,
S.
,
2006
, “
Biomechanics and Anterior Cruciate Ligament Reconstruction
,”
J. Orthop. Surg. Res.
,
1
(
1
), p.
2
.
34.
Livesay
,
G. A.
,
Fujie
,
H.
,
Kashiwaguchi
,
S.
,
Morrow
,
D. A.
,
Fu
,
F. H.
, and
Woo
,
S. L.
,
1995
, “
Determination of the In Situ Forces and Force Distribution Within the Human Anterior Cruciate Ligament
,”
Ann. Biomed. Eng.
,
23
(
4
), pp.
467
474
.
35.
Livesay
,
G. A.
,
Rudy
,
T. W.
,
Woo
,
S. L.
,
Runco
,
T. J.
,
Sakane
,
M.
,
Li
,
G.
, and
Fu
,
F. H.
,
1997
, “
Evaluation of the Effect of Joint Constraints on the In Situ Force Distribution in the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
15
(
2
), pp.
278
284
.
36.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.
37.
Fujie
,
H.
,
Livesay
,
G. A.
,
Fujita
,
M.
, and
Woo
,
S. L.
,
1996
, “
Forces and Moments in Six-DOF at the Human Knee Joint: Mathematical Description for Control
,”
J. Biomech.
,
29
(
12
), pp.
1577
1585
.
38.
Fujie
,
H.
, and
Yagi
,
H.
,
2011
, “
Novel Robotic System for Joint Mechanical Tests Using Velocity-Impedance Control
,”
ASME
Paper No. SBC2011-53884.
39.
Goertzen
,
D. J.
, and
Kawchuk
,
G. N.
,
2009
, “
A Novel Application of Velocity-Based Force Control for Use in Robotic Biomechanical Testing
,”
J. Biomech.
,
42
(
3
), pp.
366
369
.
40.
Lawless
,
I. M.
,
Ding
,
B.
,
Cazzolato
,
B. S.
, and
Costi
,
J. J.
,
2014
, “
Adaptive Velocity-Based Six Degree of Freedom Load Control for Real-Time Unconstrained Biomechanical Testing
,”
J. Biomech.
,
47
(
12
), pp.
3241
3247
.
41.
Hirabayashi
,
H.
,
Sugimoto
,
K.
,
Enomoto
,
A.
, and
Ishimaru
,
I.
,
2000
, “
Robot Manipulation Using Virtual Compliance Control
,”
J. Rob. Mechantronics
,
12
(
5
), pp.
567
576
.
42.
Kanamori
,
A.
,
Woo
,
S. L.
,
Ma
,
C. B.
,
Zeminski
,
J.
,
Rudy
,
T. W.
,
Li
,
G.
, and
Livesay
,
G. A.
,
2000
, “
The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology
,”
Arthroscopy
,
16
(
6
), pp.
633
639
.
43.
Moore
,
S. M.
,
Stehle
,
J. H.
,
Rainis
,
E. J.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
,
2008
, “
The Current Anatomical Description of the Inferior Glenohumeral Ligament Does Not Correlate With Its Functional Role in Positions of External Rotation
,”
J. Orthop. Res.
,
26
(
12
), pp.
1598
1604
.
44.
Fujie
,
H.
,
Mabuchi
,
K.
,
Tsukamoto
,
Y.
,
Yamamoto
,
M.
, and
Sasada
,
T.
,
1987
, “
Application of Robotics to the Knee Instability Test—Preliminary Experiment of Canine Knee Joints
,”
Annual Meeting of Japanese Society for Orthopaedic Biomechanics
, pp.
105
110
.
45.
Fujie
,
H.
,
Mabuchi
,
K.
,
Tsukamoto
,
Y.
,
Yamamoto
,
M.
, and
Sasada
,
T.
,
1989
, “
Application of Robotics to Palpation of Injury of Ligaments—Development of a New Method of Knee Instability Test
,”
American Society of Mechanical Engineers—Bioengineering Division
, San Francisco, CA, pp.
119
121
.
46.
Bell
,
K. M.
,
Arilla
,
F. V.
,
Rahnemai-Azar
,
A. A.
,
Fu
,
F. H.
,
Musahl
,
V.
, and
Debski
,
R. E.
,
2015
, “
Novel Technique for Evaluation of Knee Function Continuously Through the Range of Flexion
,”
J. Biomech.
,
48
(
13
), pp.
3728
3731
.
47.
Ma
,
C. B.
,
Janaushek
,
M. A.
,
Vogrin
,
T. M.
,
Rudy
,
T. W.
,
Harner
,
C. D.
, and
Woo
,
S. L.
,
2000
, “
Significance of Changes in the Reference Position for Measurements of Tibial Translation and Diagnosis of Cruciate Ligament Deficiency
,”
J. Orthop. Res.
,
18
(
2
), pp.
176
182
.
48.
Woo
,
S. L.
,
Chan
,
S. S.
, and
Yamaji
,
T.
,
1997
, “
Biomechanics of Knee Ligament Healing, Repair and Reconstruction
,”
J. Biomech.
,
30
(
5
), pp.
431
439
.
49.
Markolf
,
K. L.
,
Jackson
,
S. R.
,
Foster
,
B.
, and
McAllister
,
D. R.
,
2014
, “
ACL Forces and Knee Kinematics Produced by Axial Tibial Compression During a Passive Flexion-Extension Cycle
,”
J. Orthop. Res.
,
32
(
1
), pp.
89
95
.
50.
Malicky
,
D. M.
,
Kuhn
,
J. E.
,
Frisancho
,
J. C.
,
Lindholm
,
S. R.
,
Raz
,
J. A.
, and
Soslowsky
,
L. J.
,
2002
, “
Neer Award 2001: Nonrecoverable Strain Fields of the Anteroinferior Glenohumeral Capsule Under Subluxation
,”
J. Shoulder Elbow Surg.
,
11
(
6
), pp.
529
540
.
51.
Moore
,
S. M.
,
Ellis
,
B.
,
Weiss
,
J. A.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
,
2010
, “
The Glenohumeral Capsule Should Be Evaluated as a Sheet of Fibrous Tissue: A Validated Finite Element Model
,”
Ann. Biomed. Eng.
,
38
(
1
), pp.
66
76
.
52.
Claes
,
S.
,
Vereecke
,
E.
,
Maes
,
M.
,
Victor
,
J.
,
Verdonk
,
P.
, and
Bellemans
,
J.
,
2013
, “
Anatomy of the Anterolateral Ligament of the Knee
,”
J. Anat.
,
223
(
4
), pp.
321
328
.
53.
Guenther
,
D.
,
Rahnemai-Azar
,
A. A.
,
Bell
,
K. M.
,
Irarrazaval
,
S.
,
Fu
,
F. H.
,
Musahl
,
V.
, and
Debski
,
R. E.
,
2016
, “
The Anterolateral Capsule of the Knee Behaves Like a Sheet of Fibrous Tissue
,”
Am. J. Sports Med.
(epub).
54.
Sexton
,
S. L.
,
Guenther
,
D.
,
Bell
,
K. M.
,
Irarrazaval
,
S.
,
Rahnemai-Azar
,
A. A.
,
Fu
,
F. H.
,
Musahl
,
V.
, and
Debski
,
R. E.
,
2016
, “
Anterolateral Capsule of the Knee Functions as a Sheet of Tissue Based on Tissue Strain
,”
Summer Biomechanics, Bioengineering and Biotransport Conference
, National Harbor, MD, p.
SB3C2016-2096
.http://www.engineering.pitt.edu/Departments/Bioengineering/_.../Sexton_Stephanie/
55.
Darcy
,
S. P.
,
Kilger
,
R. H.
,
Woo
,
S. L.
, and
Debski
,
R. E.
,
2006
, “
Estimation of ACL Forces by Reproducing Knee Kinematics Between Sets of Knees: A Novel Non-Invasive Methodology
,”
J. Biomech.
,
39
(
13
), pp.
2371
2377
.
56.
Nesbitt
,
R. J.
,
Herfat
,
S. T.
,
Boguszewski
,
D. V.
,
Engel
,
A. J.
,
Galloway
,
M. T.
, and
Shearn
,
J. T.
,
2014
, “
Primary and Secondary Restraints of Human and Ovine Knees for Simulated In Vivo Gait Kinematics
,”
J. Biomech.
,
47
(
9
), pp.
2022
2027
.
57.
Arciero
,
R. A.
,
Wheeler
,
J. H.
,
Ryan
,
J. B.
, and
McBride
,
J. T.
,
1994
, “
Arthroscopic Bankart Repair Versus Nonoperative Treatment for Acute, Initial Anterior Shoulder Dislocations
,”
Am. J. Sports Med.
,
22
(
5
), pp.
589
594
.
58.
Browe
,
D. P.
,
Rainis
,
C. A.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
,
2013
, “
Injury to the Anteroinferior Glenohumeral Capsule During Anterior Dislocation
,”
Clin. Biomech.
,
28
(
2
), pp.
140
145
.
59.
Browe
,
D. P.
,
Voycheck
,
C. A.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
,
2014
, “
Changes to the Mechanical Properties of the Glenohumeral Capsule During Anterior Dislocation
,”
J. Biomech.
,
47
(
2
), pp.
464
469
.
60.
Rainis
,
C. A.
,
Browe
,
D. P.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
,
2013
, “
Capsule Function Following Anterior Dislocation: Implications for Diagnosis of Shoulder Instability
,”
J. Orthop. Res.
,
31
(
6
), pp.
962
968
.
61.
Li
,
G.
,
Gil
,
J.
,
Kanamori
,
A.
, and
Woo
,
S. L.
,
1999
, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
657
662
.
You do not currently have access to this content.