The translation of many tissue engineering/regenerative medicine (TE/RM) therapies that demonstrate promise in vitro are delayed or abandoned due to reduced and inconsistent efficacy when implemented in more complex and clinically relevant preclinical in vivo models. Determining mechanistic reasons for impaired treatment efficacy is challenging after a regenerative therapy is implanted due to technical limitations in longitudinally measuring the progression of key environmental cues in vivo. The ability to acquire real-time measurements of environmental parameters of interest including strain, pressure, pH, temperature, oxygen tension, and specific biomarkers within the regenerative niche in situ would significantly enhance the information available to tissue engineers to monitor and evaluate mechanisms of functional healing or lack thereof. Continued advancements in material and fabrication technologies utilized by microelectromechanical systems (MEMSs) and the unique physical characteristics of passive magnetoelastic sensor platforms have created an opportunity to implant small, flexible, low-power sensors into preclinical in vivo models, and quantitatively measure environmental cues throughout healing. In this perspective article, we discuss the need for longitudinal measurements in TE/RM research, technical progress in MEMS and magnetoelastic approaches to implantable sensors, the potential application of implantable sensors to benefit preclinical TE/RM research, and the future directions of collaborative efforts at the intersection of these two important fields.

References

References
1.
Nerem
,
R. M.
,
2006
, “
Tissue Engineering: The Hope, the Hype, and the Future
,”
Tissue Eng.
,
12
(
5
), pp.
1143
1150
.
2.
Carrel
,
A.
, and
Lindbergh
,
C.
,
1938
, “
The Culture of Organs
,”
Can. Med. Assoc. J.
,
39
(
4
), p.
416
.
3.
Lysaght
,
M. J.
,
Jaklenec
,
A.
, and
Deweerd
,
E.
,
2008
, “
Great Expectations: Private Sector Activity in Tissue Engineering, Regenerative Medicine, and Stem Cell Therapeutics
,”
Tissue Eng. Part A
,
14
(
2
), pp.
305
315
.
4.
Guldberg
,
R. E.
,
2009
, “
Spatiotemporal Delivery Strategies for Promoting Musculoskeletal Tissue Regeneration
,”
J. Bone Miner. Res.
,
24
(
9
), pp.
1507
1511
.
5.
Wray
,
J. B.
,
1970
, “
The Biochemical Characteristics of the Fracture Hematoma in Man
,”
Surg., Gynecol. Obstet.
,
130
(
5
), pp.
847
852
.
6.
Brighton
,
C. T.
, and
Krebs
,
A. G.
,
1972
, “
Oxygen Tension of Healing Fractures in the Rabbit
,”
J. Bone Jt. Surg. Am.
,
54
(
2
), pp.
323
332
.
7.
Brighton
,
C. T.
, and
Krebs
,
A. G.
,
1972
, “
Oxygen Tension of Nonunion of Fractured Femurs in the Rabbit
,”
Surg. Gynecol. Obstet.
,
135
(
3
), pp.
379
385
.
8.
Kolar
,
P.
,
Gaber
,
T.
,
Perka
,
C.
,
Duda
,
G. N.
, and
Buttgereit
,
F.
,
2011
, “
Human Early Fracture Hematoma is Characterized by Inflammation and Hypoxia
,”
Clin. Orthop. Relat. Res.
,
469
(
11
), pp.
3118
3126
.
9.
Yuasa
,
M.
,
Mignemi
,
N. A.
,
Nyman
,
J. S.
,
Duvall
,
C. L.
,
Schwartz
,
H. S.
,
Okawa
,
A.
,
Yoshii
,
T.
,
Bhattacharjee
,
G.
,
Zhao
,
C.
,
Bible
,
J. E.
,
Obremskey
,
W. T.
,
Flick
,
M. J.
,
Degen
,
J. L.
,
Barnett
,
J. V.
,
Cates
,
J. M. M.
, and
Schoenecker
,
J. G.
,
2015
, “
Fibrinolysis is Essential for Fracture Repair and Prevention of Heterotopic Ossification
,”
J. Clin. Invest.
,
125
(
8
), pp.
3117
3131
.
10.
Boerckel
,
J. D.
,
Uhrig
,
B. A.
,
Willett
,
N. J.
,
Huebsch
,
N.
, and
Guldberg
,
R. E.
,
2011
, “
Mechanical Regulation of Vascular Growth and Tissue Regeneration In Vivo
,”
Proc. Natl. Acad. Sci.
,
108
(
37
), pp.
E674
E680
.
11.
Boerckel
,
J. D.
,
Kolambkar
,
Y. M.
,
Stevens
,
H. Y.
,
Lin
,
A. S. P.
,
Dupont
,
K. M.
, and
Guldberg
,
R. E.
,
2012
, “
Effects of In Vivo Mechanical Loading on Large Bone Defect Regeneration
,”
J. Orthop. Res.
,
30
(
7
), pp.
1067
1075
.
12.
Lienau
,
J.
,
Schmidt-Bleek
,
K.
,
Peters
,
A.
,
Haschke
,
F.
,
Duda
,
G. N.
,
Perka
,
C.
,
Bail
,
H. J.
,
Schütze
,
N.
,
Jakob
,
F.
, and
Schell
,
H.
,
2009
, “
Differential Regulation of Blood Vessel Formation Between Standard and Delayed Bone Healing
,”
J. Orthop. Res.
,
27
(
9
), pp.
1133
1140
.
13.
Claes
,
L. E.
, and
Cunningham
,
J. L.
,
2009
, “
Monitoring the Mechanical Properties of Healing Bone
,”
Clin. Orthop. Relat. Res.
,
467
(
8
), pp.
1964
1971
.
14.
Seide
,
K.
,
Aljudaibi
,
M.
,
Weinrich
,
N.
,
Kowald
,
B.
,
Jürgens
,
C.
,
Müller
,
J.
, and
Faschingbauer
,
M.
,
2012
, “
Telemetric Assessment of Bone Healing With an Instrumented Internal Fixator: A Preliminary Study
,”
J. Bone Jt. Surg. Br.
,
94
(
3
), pp.
398
404
.
15.
McGilvray
,
K. C.
,
Unal
,
E.
,
Troyer
,
K. L.
,
Santoni
,
B. G.
,
Palmer
,
R. H.
,
Easley
,
J. T.
,
Demir
,
H. V.
, and
Puttlitz
,
C. M.
,
2015
, “
Implantable Microelectromechanical Sensors for Diagnostic Monitoring and Post-Surgical Prediction of Bone Fracture Healing
,”
J. Orthop. Res.
,
33
(
10
), pp.
1439
1446
.
16.
Claes
,
L.
,
Recknagel
,
S.
, and
Ignatius
,
A.
,
2012
, “
Fracture Healing Under Healthy and Inflammatory Conditions
,”
Nat. Rev. Rheumatol.
,
8
(
3
), pp.
133
143
.
17.
Korn
,
C.
, and
Augustin
,
H. G.
,
2015
, “
Mechanisms of Vessel Pruning and Regression
,”
Dev. Cell
,
34
(
1
), pp.
5
17
.
18.
Tzioupis
,
C.
, and
Giannoudis
,
P. V.
,
2007
, “
Prevalence of Long-Bone Non-Unions
,”
Injury
,
38
(Suppl. 2), pp.
S3
S9
.
19.
Hak
,
D. J.
,
Fitzpatrick
,
D.
,
Bishop
,
J. A.
,
Marsh
,
J. L.
,
Tilp
,
S.
,
Schnettler
,
R.
,
Simpson
,
H.
, and
Alt
,
V.
,
2014
, “
Delayed Union and Nonunions: Epidemiology, Clinical Issues, and Financial Aspects
,”
Injury
,
45
(
Suppl. 2
), pp.
S3
S7
.
20.
Tang
,
D.
,
Tare
,
R. S.
,
Yang
,
L.-Y.
,
Williams
,
D. F.
,
Ou
,
K.-L.
, and
Oreffo
,
R. O. C.
,
2016
, “
Biofabrication of Bone Tissue: Approaches, Challenges and Translation for Bone Regeneration
,”
Biomaterials
,
83
, pp.
363
382
.
21.
Amini
,
A. R.
,
Laurencin
,
C. T.
, and
Nukavarapu
,
S. P.
,
2012
, “
Bone Tissue Engineering: Recent Advances and Challenges
,”
Crit. Rev. Biomed. Eng.
,
40
(
5
), pp.
363
408
.
22.
Sebag
,
F.
,
Vaillant-Lombard
,
J.
,
Berbis
,
J.
,
Griset
,
V.
,
Henry
,
J. F.
,
Petit
,
P.
, and
Oliver
,
C.
,
2010
, “
Shear Wave Elastography: A New Ultrasound Imaging Mode for the Differential Diagnosis of Benign and Malignant Thyroid Nodules
,”
J. Clin. Endocrinol. Metab.
,
95
(
12
), pp.
5281
5288
.
23.
Weidemann
,
F.
,
Eyskens
,
B.
,
Jamal
,
F.
,
Mertens
,
L.
,
Kowalski
,
M.
,
D'Hooge
,
J.
,
Bijnens
,
B.
,
Gewillig
,
M.
,
Rademakers
,
F.
,
Hatle
,
L.
, and
Sutherland
,
G. R.
,
2002
, “
Quantification of Regional Left and Right Ventricular Radial and Longitudinal Function in Healthy Children Using Ultrasound-Based Strain Rate and Strain Imaging
,”
J. Am. Soc. Echocardiography
,
15
(
1
), pp.
20
28
.
24.
Mason
,
R. P.
,
Antich
,
P. P.
,
Babcock
,
E. E.
,
Constantinescu
,
A.
,
Peschke
,
P.
, and
Hahn
,
E. W.
,
1994
, “
Non-Invasive Determination of Tumor Oxygen Tension and Local Variation With Growth
,”
Int. J. Radiat. Oncol.
,
29
(
1
), pp.
95
103
.
25.
Zhang
,
X.
,
Lin
,
Y.
, and
Gillies
,
R. J.
,
2010
, “
Tumor pH and Its Measurement
,”
J. Nucl. Med.
,
51
(
8
), pp.
1167
1170
.
26.
Gallagher
,
F. A.
,
Kettunen
,
M.
I
,
Day
,
S. E.
,
Hu
,
D.-E.
,
Ardenkjaer-Larsen
,
J. H.
,
Zandt
,
R.
in't
,
Jensen
,
P. R.
,
Karlsson
,
M.
,
Golman
,
K.
,
Lerche
,
M. H.
, and
Brindle
,
K. M.
,
2008
, “
Magnetic Resonance Imaging of pH In Vivo Using Hyperpolarized 13C-Labelled Bicarbonate
,”
Nature
,
453
(
7197
), pp.
940
943
.
27.
Wulsten
,
D.
,
Glatt
,
V.
,
Ellinghaus
,
A.
,
Schmidt-Bleek
,
K.
,
Petersen
,
A.
,
Schell
,
H.
,
Lienau
,
J.
,
Sebald
,
W.
,
Plöger
,
F.
,
Seemann
,
P.
, and
Duda
,
G. N.
,
2011
, “
Time Kinetics of Bone Defect Healing in Response to BMP-2 and GDF-5 Characterised by in vivo Biomechanics
,”
Eur. Cell. Mater.
,
21
, pp.
177
192
.
28.
Anderson
,
A. E.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Verification, Validation and Sensitivity Studies in Computational Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
3
), pp.
171
184
.
29.
Henninger
,
H. B.
,
Reese
,
S. P.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
,
2010
, “
Validation of Computational Models in Biomechanics
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
7
), pp.
801
812
.
30.
Brown
,
G. N.
,
Sattler
,
R. L.
, and
Guo
,
X. E.
,
2016
, “
Experimental Studies of Bone Mechanoadaptation: Bridging In Vitro and In Vivo Studies With Multiscale Systems
,”
Interface Focus
,
6
(
1
), p.
20150071
.
31.
Bhatia
,
S. N.
, and
Ingber
,
D. E.
,
2014
, “
Microfluidic Organs-On-Chips
,”
Nat. Biotechnol.
,
32
(
8
), pp.
760
772
.
32.
Claes
,
L. E.
,
Claes
,
L. E.
,
Heigele
,
C. A.
,
Heigele
,
C. A.
,
Neidlinger-Wilke
,
C.
,
Neidlinger-Wilke
,
C.
,
Kaspar
,
D.
,
Kaspar
,
D.
,
Seidl
,
W.
,
Seidl
,
W.
,
Margevicius
,
K. J.
,
Margevicius
,
K. J.
,
Augat
,
P.
, and
Augat
,
P.
,
1998
, “
Effects of Mechanical Factors on the Fracture Healing Process
,”
Clin. Orthop. Relat. Res.
,
Oct
(
355Suppl.
), pp.
S132
S147
.
33.
Epari
,
D. R.
,
Lienau
,
J.
,
Schell
,
H.
,
Witt
,
F.
, and
Duda
,
G. N.
,
2008
, “
Pressure, Oxygen Tension and Temperature in the Periosteal Callus During Bone Healing—An In Vivo Study in Sheep
,”
Bone
,
43
(
4
), pp.
734
739
.
34.
Szivek
,
J. A.
,
Ruth
,
J. T.
,
Heden
,
G. J.
,
Martinez
,
M. A.
,
Diggins
,
N. H.
, and
Wenger
,
K. H.
,
2016
, “
Determination of Joint Loads Using New Sensate Scaffolds for Regenerating Large Cartilage Defects in the Knee
,”
J. Biomed. Mater. Res., Part B
, epub.
35.
Rebello
,
K. J.
,
2004
, “
Applications of MEMS in Surgery
,”
Proc. IEEE
,
92
(
1
), pp.
43
55
.
36.
Pang
,
C.
,
Lee
,
C.
, and
Suh
,
K. Y.
,
2013
, “
Recent Advances in Flexible Sensors for Wearable and Implantable Devices
,”
J. Appl. Polym. Sci.
,
130
(
3
), pp.
1429
1441
.
37.
Bashir
,
R.
,
2004
, “
BioMEMS: State-of-the-Art in Detection, Opportunities and Prospects
,”
Adv. Drug Delivery Rev.
,
56
(
11
), pp.
1565
1586
.
38.
Du
,
H.
, and
Bogue
,
R.
,
2007
, “
MEMS Sensors: Past, Present and Future
,”
Sens. Rev.
,
27
(1), pp.
7
13
.http://www.dsif.fee.unicamp.br/~fabiano/IE012/Material%20complementar/silicon%20sensors%20past%20present%20and%20future.pdf
39.
Grayson
,
A. C. R.
,
Shawgo
,
R. S.
,
Johnson
,
A. M.
,
Flynn
,
N. T.
,
Li
,
Y.
,
Cima
,
M. J.
, and
Langer
,
R.
,
2004
, “
A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices
,”
Proc. IEEE
,
92
(
1
), pp.
6
21
.
40.
Receveur
,
R. A. M.
,
Lindemans
,
F. W.
, and
De Rooij
,
N. F.
,
2007
, “
Microsystem Technologies for Implantable Applications
,”
J. Micromech. Microeng.
,
17
(
5
), pp.
R50
R80
.
41.
Wise
,
K. D.
,
2007
, “
Integrated Sensors, MEMS, and Microsystems: Reflections on a Fantastic Voyage
,”
Sens. Actuators
, A,
136
(
1
), pp.
39
50
.
42.
Allen
,
M. G.
,
2014
, “
Microfabricated Implantable Wireless Microsystems: Permanent and Biodegradable Implementations
,”
IEEE
International Conference Micro Electro Mechanical Systems
, San Francisco, CA, Jan. 26–30, pp.
1
4
.
43.
Langenfeld
,
H.
,
Krein
,
A.
,
Kirstein
,
M.
, and
Binner
,
L.
,
1998
, “
Peak Endocardial Acceleration-Based Clinical Testing of the ‘BEST’ DDDR Pacemaker. European PEA Clinical Investigation Group
,”
Pacing Clin. Electrophysiol.
,
21
(
11 Pt 2
), pp.
2187
2191
.
44.
Dimarco
,
J. P.
, and
Mower
,
M.
,
2003
, “
Implantable Cardioverter–Defibrillators
,”
New Engl. J. Med.
,
349
, pp.
1836
1847
.
45.
Magalski
,
A.
,
Adamson
,
P.
,
Gadler
,
F.
,
Böehm
,
M.
,
Steinhaus
,
D.
,
Reynolds
,
D.
,
Vlach
,
K.
,
Linde
,
C.
,
Cremers
,
B.
,
Sparks
,
B.
, and
Bennett
,
T.
,
2002
, “
Continuous Ambulatory Right Heart Pressure Measurements With an Implantable Hemodynamic Monitor: A Multicenter, 12-Month Follow-Up Study of Patients With Chronic Heart Failure
,”
J. Card. Failure
,
8
(
2
), pp.
63
70
.
46.
Kipke
,
D. R.
,
Vetter
,
R. J.
,
Williams
,
J. C.
, and
Hetke
,
J. F.
,
2003
, “
Silicon-Substrate Intracortical Microelectrode Arrays for Long-Term Recording of Neuronal Spike Activity in Cerebral Cortex
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
11
(
2
), pp.
151
155
.
47.
Schmidt
,
E. M.
,
Bak
,
M. J.
,
Hambrecht
,
F. T.
,
Kufta
,
C. V.
,
O'Rourke
,
D. K.
, and
Vallabhanath
,
P.
,
1996
, “
Feasibility of a Visual Prosthesis for the Blind Based on Intracortical Microstimulation of the Visual Cortex
,”
Brain
,
119
(
5
), pp.
507
522
.
48.
Zeng
,
F. G.
,
Rebscher
,
S.
,
Harrison
,
W.
,
Sun
,
X.
, and
Feng
,
H.
,
2008
, “
Cochlear Implants: System Design, Integration, and Evaluation
,”
IEEE Rev. Biomed. Eng.
,
1
, pp.
115
142
.
49.
Ziaie
,
B.
,
Von Arx
,
J. A.
,
Dokmeci
,
M. R.
, and
Najafi
,
K.
,
1996
, “
A Hermetic Glass-Silicon Micropackage With High-Density On-Chip Feedthroughs for Sensors and Actuators
,”
J. Microelectromech. Syst.
,
5
(
3
), pp.
166
179
.
50.
Najafi
,
K.
,
2007
, “
Packaging of Implantable Microsystems
,” Sixth
IEEE
Sensors Conference, Atlanta, Oct. 28–30, pp.
58
63
.
51.
Gilleo, Ken, ET-Trends.
,
L. L. C.
, and
Warwick
,
R. I.
,
2005
, “
MEMS in Medicine
,”
Circuits Assembly
,
16
(8), pp. 1–10.http://www.allflexinc.com/PDF/Medical%20Electronics-MEMS.pdf
52.
Steichen
,
S. D.
,
Caldorera-Moore
,
M.
, and
Peppas
,
N. A.
,
2013
, “
A Review of Current Nanoparticle and Targeting Moieties for the Delivery of Cancer Therapeutics
,”
Off. J. Eur. Fed. Pharm. Sci.
,
48
(
3
), pp.
416
427
.
53.
Jivani
,
R. R.
,
Lakhtaria
,
G. J.
,
Patadiya
,
D. D.
,
Patel
,
L. D.
,
Jivani
,
N. P.
, and
Jhala
,
B. P.
,
2014
, “
Biomedical Microelectromechanical Systems (BioMEMS): Revolution in Drug Delivery and Analytical Techniques
,”
Saudi Pharm. J.
,
24
(
1
), pp.
1
20
.
54.
Tng
,
D. J. H.
,
Hu
,
R.
,
Song
,
P.
,
Roy
,
I.
, and
Yong
,
K. T.
,
2012
, “
Approaches and Challenges of Engineering Implantable Microelectromechanical Systems (MEMS) Drug Delivery Systems for In Vitro and In Vivo Applications
,”
Micromachines
,
3
(
4
), pp.
615
631
.
55.
Viventi
,
J.
,
Kim
,
D.-H.
,
Vigeland
,
L.
,
Frechette
,
E. S.
,
Blanco
,
J. A.
,
Kim
,
Y.-S.
,
Avrin
,
A. E.
,
Tiruvadi
, V
. R.
,
Hwang
,
S.-W.
,
Vanleer
,
A. C.
,
Wulsin
,
D. F.
,
Davis
,
K.
,
Gelber
,
C. E.
,
Palmer
,
L.
,
Van der Spiegel
,
J.
,
Wu
,
J.
,
Xiao
,
J.
,
Huang
,
Y.
,
Contreras
,
D.
,
Rogers
,
J. A.
, and
Litt
,
B.
,
2011
, “
Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity In Vivo
,”
Nat. Neurosci.
,
14
(
12
), pp.
1599
1605
.
56.
Rousche
,
P. J.
,
Pellinen
,
D. S.
,
Pivin
,
D. P.
,
Williams
,
J. C.
,
Vetter
,
R. J.
, and
Kipke
,
D. R.
,
2001
, “
Flexible Polyimide-Based Intracortical Electrode Arrays With Bioactive Capability
,”
IEEE Trans. Biomed. Eng.
,
48
(
3
), pp.
361
370
.
57.
Chen
,
P. J.
,
Saati
,
S.
,
Varma
,
R.
,
Humayun
,
M. S.
, and
Tai
,
Y. C.
,
2010
, “
Wireless Intraocular Pressure Sensing Using Microfabricated Minimally Invasive Flexible-Coiled LC Sensor Implant
,”
J. Microelectromech. Syst.
,
19
(
4
), pp.
721
734
.
58.
Luo
,
M.
,
Song
,
C. J.
,
Herrault
,
F.
, and
Allen
,
M. G.
,
2014
, “
A Microfabricated RF Wireless Pressure Sensor Made Completely of Biodegradable Materials
,”
Journal of Microelectromechanical Systems
,
23
(1), pp.
4
13
.
59.
Luo
,
M.
,
Martinez
,
A. W.
,
Song
,
C.
,
Herrault
,
F.
, and
Allen
,
M. G.
,
2014
, “
A Microfabricated Wireless RF Pressure Sensor Made Completely of Biodegradable Materials
,”
J. Microelectromech. Syst.
,
23
(
1
), pp.
4
13
.
60.
Boutry
,
C. M.
,
Chandrahalim
,
H.
,
Streit
,
P.
,
Schinhammer
,
M.
,
Hänzi
,
A. C.
, and
Hierold
,
C.
,
2013
, “
Characterization of Miniaturized RLC Resonators Made of Biodegradable Materials for Wireless Implant Applications
,”
Sens. Actuators, A
,
189
, pp.
344
355
.
61.
Heller
,
A.
,
2006
, “
Potentially Implantable Miniature Batteries
,”
Anal. Bioanal. Chem.
,
385
(
3
), pp.
469
473
.
62.
Yin
,
L.
,
Huang
,
X.
,
Xu
,
H.
,
Zhang
,
Y.
,
Lam
,
J.
,
Cheng
,
J.
, and
Rogers
,
J. A.
,
2014
, “
Materials, Designs, and Operational Characteristics for Fully Biodegradable Primary Batteries
,”
Adv. Mater.
,
26
(
23
), pp.
3879
3884
.
63.
She
,
D.
,
Tsang
,
M.
,
Kim
,
J. K.
, and
Allen
,
M. G.
,
2015
, “
Immobilized Electrolyte Biodegradable Batteries for Implantable MEMS
,”
18th International Conference on Solid-State Sensors, Actuators and Microsystems
(
TRANSDUCERS
), Anchorage, Alaska, June 21–25, pp.
494
497
.
64.
Tsang
,
M.
,
Armutlulu
,
A.
,
Martinez
,
A. W.
,
Allen
,
S. A. B.
, and
Allen
,
M. G.
,
2015
, “
Biodegradable Magnesium/Iron Batteries With Polycaprolactone Encapsulation: A Microfabricated Power Source for Transient Implantable Devices
,”
Microsyst. Nanoeng.
,
1
, p.
15024
.
65.
Zhang
,
T.
,
Tsang
,
M.
, and
Allen
,
M. G.
,
2016
, “
Biodegradable Electrical Interconnects for Transient Implantable Systems
,” Solid-State Sensor, Actuator, Microsystems Work, Philadelphia, PA, Oct. 24–27.
66.
Kim
,
D.-H.
,
Viventi
,
J.
,
Amsden
,
J. J.
,
Xiao
,
J.
,
Vigeland
,
L.
,
Kim
,
Y.-S.
,
Blanco
,
J. A.
,
Panilaitis
,
B.
,
Frechette
,
E. S.
,
Contreras
,
D.
,
Kaplan
,
D. L.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Hwang
,
K.-C.
,
Zakin
,
M. R.
,
Litt
,
B.
, and
Rogers
,
J. A.
,
2010
, “
Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics
,”
Nat. Mater.
,
9
(
6
), pp.
511
517
.
67.
Shen
,
W.
,
Karumbaiah
,
L.
,
Liu
,
X.
,
Saxena
,
T.
,
Chen
,
S.
,
Patkar
,
R.
,
Bellamkonda
,
R. V.
, and
Allen
,
M. G.
,
2015
, “
Extracellular Matrix-Based Intracortical Microelectrodes: Toward a Microfabricated Neural Interface Based on Natural Materials
,”
Microsyst. Nanoeng.
,
1
, p.
15010
.
68.
Grimes
,
C. A.
,
Roy
,
S. C.
,
Rani
,
S.
, and
Cai
,
Q.
,
2011
, “
Theory, Instrumentation and Applications of Magnetoelastic Resonance Sensors: A Review
,”
Sensors (Basel)
,
11
(
3
), pp.
2809
2844
.
69.
Pereles
,
B. D.
,
Dienhart
,
T.
,
Sansom
,
T.
,
Johnston
,
K.
, and
Ong
,
K. G.
,
2012
, “
A Wireless, Passive Load Cell Based on Magnetoelastic Resonance
,”
Smart Mater. Struct.
,
21
(
7
), p. 075018.
70.
Pereles
,
B. D.
,
DeRouin
,
A. J.
, and
Ong
,
K. G.
,
2015
, “
Partially Loaded Magnetoelastic Sensors With Customizable Sensitivities for Large Force Measurements
,”
IEEE Sens. J.
,
15
(
1
), pp.
591
597
.
71.
Nakamura
,
T.
,
Inoue
,
Y.
,
Kim
,
D.
,
Matsuhisa
,
N.
,
Yokota
,
T.
,
Sekitani
,
T.
,
Someya
,
T.
, and
Sekino
,
M.
,
2014
, “
Basic Characteristics of Implantable Flexible Pressure Sensor for Wireless Readout Using MRI
,”
36th Annual International Conference of the Engineering in Medicine and Biology Society
,
IEEE
, pp.
2338
2341
.
72.
Green
,
S. R.
,
Kwon
,
R. S.
,
Elta
,
G. H.
, and
Gianchandani
,
Y. B.
,
2013
, “
in vivo and In Situ Evaluation of a Wireless Magnetoelastic Sensor Array for Plastic Biliary Stent Monitoring
,”
Biomed. Microdevices
,
15
(
3
), pp.
509
517
.
73.
Oess
,
N. P.
,
Weisse
,
B.
, and
Nelson
,
B. J.
,
2009
, “
Magnetoelastic Strain Sensor for Optimized Assessment of Bone Fracture Fixation
,”
IEEE Sens. J.
,
9
(
8
), pp.
961
968
.
74.
DeRouin
,
A.
,
Pacella
,
N.
,
Zhao
,
C.
,
An
,
K.-N.
, and
Ong
,
K.
,
2015
, “
A Wireless Sensor for Real-Time Monitoring of Tensile Force on Sutured Wound Sites
,”
IEEE Trans. Biomed. Eng.
,
63
(8), pp. 1665–1671.
75.
Holmes
,
H. R.
,
DeRouin
,
A.
,
Wright
,
S.
,
Riedemann
,
T. M.
,
Lograsso
,
T. A.
,
Rajachar
,
R. M.
, and
Ong
,
K. G.
,
2014
, “
Biodegradation and Biocompatibility of Mechanically Active Magnetoelastic Materials
,”
Smart Mater. Struct.
,
23
(
9
), p.
095036
.
76.
Vlaisavljevich
,
E.
,
Holmes
,
H. R.
,
Tan
,
E. L.
,
Qian
,
Z.
,
Trierweiler
,
S.
,
Ong
,
K. G.
, and
Rajachar
,
R. M.
,
2013
, “
Magnetoelastic Vibrational Biomaterials for Real-Time Monitoring and Modulation of the Host Response
,”
J. Mater. Sci. Mater. Med.
,
24
(
4
), pp.
1093
1104
.
77.
Vlaisavljevich
,
E.
,
Janka
,
L. P.
,
Ong
,
K. G.
, and
Rajachar
,
R. M.
,
2011
, “
Magnetoelastic Materials as Novel Bioactive Coatings for the Control of Cell Adhesion
,”
IEEE Trans. Biomed. Eng.
,
58
(
3
), pp.
698
704
.
78.
Pepakayala
,
V.
,
Stein
,
J.
, and
Gianchandani
,
Y.
,
2015
, “
Resonant Magnetoelastic Microstructures for Wireless Actuation of Liquid Flow on 3D Surfaces and Use in Glaucoma Drainage Implants
,”
Microsyst. Nanoeng.
,
1
, p.
15032
.
79.
Trierweiler
,
S.
,
Holmes
,
H.
,
Pereles
,
B.
,
Rajachar
,
R.
, and
Ong
,
K. G.
,
2013
, “
Remotely Activated, Vibrational Magnetoelastic Array System for Controlling Cell Adhesion
,”
J. Biomed. Sci. Eng.
,
06
(
4
), pp.
478
482
.
80.
Chew
,
D. J.
,
Zhu
,
L.
,
Delivopoulos
,
E.
,
Minev
, I
. R.
,
Musick
,
K. M.
,
Mosse
,
C. A.
,
Craggs
,
M.
,
Donaldson
,
N.
,
Lacour
,
S. P.
,
McMahon
,
S. B.
, and
Fawcett
,
J. W.
,
2013
, “
A Microchannel Neuroprosthesis for Bladder Control After Spinal Cord Injury in Rat
,”
Sci. Transl. Med.
,
5
(
210
), pp.
210
155
.
81.
Chow
,
E. Y.
,
Chlebowski
,
A. L.
,
Chakraborty
,
S.
,
Chappell
,
W. J.
, and
Irazoqui
,
P. P.
,
2010
, “
Fully Wireless Implantable Cardiovascular Pressure Monitor Integrated With a Medical Stent
,”
IEEE Trans. Biomed. Eng.
,
57
(
6
), pp.
1487
1496
.
82.
Griss
,
P.
,
Enoksson
,
P.
,
Tolvanen-Laakso
,
H. K.
,
Meriläinen
,
P.
,
Ollmar
,
S.
, and
Stemme
,
G.
,
2001
, “
Micromachined Electrodes for Biopotential Measurements
,”
J. Microelectromech. Syst.
,
10
(
1
), pp.
10
16
.
83.
Cao
,
H.
,
Landge
,
V.
,
Tata
,
U.
,
Seo
,
Y. S.
,
Rao
,
S.
,
Tang
,
S. J.
,
Tibbals
,
H. F.
,
Spechler
,
S.
, and
Chiao
,
J. C.
,
2012
, “
An Implantable, Batteryless, and Wireless Capsule With Integrated Impedance and pH Sensors for Gastroesophageal Reflux Monitoring
,”
IEEE Trans. Biomed. Eng.
,
59
(
12 Part 2
), pp.
3131
3139
.
84.
Troughton
,
R. W.
,
Ritzema
,
J.
,
Eigler
,
N. L.
,
Melton
, I
. C.
,
Krum
,
H.
,
Adamson
,
P. B.
,
Kar
,
S.
,
Shah
,
P. K.
,
Whiting
,
J. S.
,
Heywood
,
J. T.
,
Rosero
,
S.
,
Singh
,
J. P.
,
Saxon
,
L.
,
Matthews
,
R.
,
Crozier
, I
. G.
, and
Abraham
,
W. T.
,
2011
, “
Direct Left Atrial Pressure Monitoring in Severe Heart Failure: Long-Term Sensor Performance
,”
J. Cardiovasc. Transl. Res.
,
4
(
1
), pp.
3
13
.
85.
Totsu
,
K.
,
Haga
,
Y.
, and
Esashi
,
M.
,
2003
, “
Vacuum Sealed Ultra Miniature Fiber-Optic Pressure Sensor Using White Light Interferometry
,”
12th International Conference Solid-State Sensors, Actuators Microsystems
, (
TRANSDUCERS
), Boston, June 8–12, pp.
931
934
.
86.
Lal
,
A.
,
2001
, “
Integrated Pressure and Flow Sensor in Silicon-Based Ultrasonic Surgical Actuator
,”
IEEE
Ultrasonics Symposium. An International Symposium
, Oct. 7–10, pp.
1373
1376
.
87.
Hong
,
M. K.
,
Wong
,
S. C.
,
Mintz
,
G. S.
,
Popma
,
J. J.
,
Kent
,
K. M.
,
Pichard
,
A. D.
,
Satler
,
L. F.
,
Leon
,
M. B.
, and
Tobis
,
J. M.
,
1995
, “
Can Coronary Flow Parameters After Stent Placement Predict Restenosis?
,”
Catheterization Cardiovasc. Diagn.
,
36
(
3
), pp.
278
282
.
88.
Umbrecht
,
F.
,
Wendlandt
,
M.
,
Juncker
,
D.
,
Hierold
,
C.
, and
Neuenschwander
,
J.
,
2005
, “
A Wireless Implantable Passive Strain Sensor System
,”
IEEE Sensors
, pp.
20
23
.
89.
Mahutte
,
C. K.
,
1998
, “
On-Line Arterial Blood Gas Analysis With Optodes: Current Status
,”
Clin. Biochem.
,
31
(
3
), pp.
119
130
.
90.
Kim
,
Y. T.
,
Kim
,
Y.-Y.
, and
Jun
,
C.-H.
,
1999
, “
Needle-Shaped Glucose Sensor With Multi-Cell Electrode Fabricated by Surface Micromachining
,”
Proc. SPIE
680
, pp.
924
930
.
91.
Mastrototaro
,
J. J.
,
Cooper
,
K. W.
,
Soundararajan
,
G.
,
Sanders
,
J. B.
, and
Shah
,
R. V.
,
2006
, “
Clinical Experience With an Integrated Continuous Glucose Sensor/Insulin Pump Platform: A Feasibility Study
,”
Adv. Ther.
,
23
(
5
), pp.
725
732
.
92.
Ling
,
Y.
,
Pong
,
T.
,
Vassiliou
,
C. C.
,
Huang
,
P. L.
, and
Cima
,
M. J.
,
2011
, “
Implantable Magnetic Relaxation Sensors Measure Cumulative Exposure to Cardiac Biomarkers
,”
Nat. Biotechnol.
,
29
(
3
), pp.
273
277
.
93.
DeHennis
,
A. D.
, and
Wise
,
K. D.
,
2006
, “
A Fully Integrated Multisite Pressure Sensor for Wireless Arterial Flow Characterization
,”
J. Microelectromech. Syst.
,
15
(
3
), pp.
678
685
.
94.
Ritzema-Carter
,
J. L. T.
,
Smyth
,
D.
,
Troughton
,
R. W.
,
Crozier
, I
. G.
,
Melton
, I
. C.
,
Richards
,
A. M.
,
Eigler
,
N.
,
Whiting
,
J.
,
Kar
,
S.
,
Krum
,
H.
, and
Abraham
,
W. T.
,
2006
, “
Dynamic Myocardial Ischemia Caused by Circumflex Artery Stenosis Detected by a New Implantable Left Atrial Pressure Monitoring Device
,”
Circulation
,
113
(
15
), pp.
705
707
.
95.
Schnakenberg
,
U.
,
Kruger
,
C.
,
Pfeffer
,
J. G.
,
Mokwa
,
W.
,
Vom Bogel
,
G.
,
Gunther
,
R.
, and
Schmitz-Rode
,
T.
,
2004
, “
Intravascular Pressure Monitoring System
,”
Sens. Actuators, A
,
110
(
1–3
), pp.
61
67
.
96.
Twa
,
M. D.
,
Roberts
,
C. J.
,
Karol
,
H. J.
,
Mahmoud
,
A. M.
,
Weber
,
P. A.
, and
Small
,
R. H.
,
2010
, “
Evaluation of a Contact Lens-Embedded Sensor for Intraocular Pressure Measurement
,”
J. Glaucoma
,
19
(
6
), pp.
382
390
.
97.
Miyake
,
H.
,
Ohta
,
T.
,
Kajimoto
,
Y.
, and
Matsukawa
,
M.
,
1997
, “
A New Ventriculoperitoneal Shunt With a Telemetric Intracranial Pressure Sensor: Clinical Experience in 94 Patients With Hydrocephalus
,”
Neurosurgery
,
40
(
5
), pp.
931
935
.
98.
Signorini
,
D. F.
,
Shad
,
A.
,
Piper
,
I. R.
, and
Statham
,
P. F.
,
1998
, “
A Clinical Evaluation of the Codman MicroSensor for Intracranial Pressure Monitoring
,”
Br. J. Neurosurg.
,
12
(
3
), pp.
223
227
.
99.
Milner
,
R.
,
2006
, “
Remote Pressure Sensing for Thoracic Endografts
,”
Endovascular Today
, pp.
1
3
.http://evtoday.com/pdfs/EVT0206_F1_Milner.pdf
100.
Takahata
,
K.
,
DeHennis
,
A.
,
Wise
,
K. D.
, and
Gianchandani
,
Y. B.
,
2004
, “
A Wireless Microsensor for Monitoring Flow and Pressure in a Blood Vessel Utilizing a Dual-Inductor Antenna Stent and Two Pressure Sensors
,” 17th
IEEE
International Conference on Micro Electro Mechanical Systems
, Maastricht, Germany, Jan. 25–29, pp.
216
219
.
101.
Renard
,
2004
, “
Implantable Glucose Sensors for Diabetes Monitoring
,”
Minimally Invasive Ther. Allied Technol.
,
13
(
2
), pp.
78
86
.
102.
Receveur
,
R. A. M.
,
Marxer
,
C. R.
,
Woering
,
R.
,
Larik
,
V. C. M. H.
, and
de Rooij
,
N. F.
,
2005
, “
Laterally Moving Bistable MEMS DC Switch for Biomedical Applications
,”
J. Microelectromech. Syst.
,
14
(
5
), pp.
1089
1098
.
103.
Schwarz
,
M.
,
Ewe
,
L.
,
Hauschild
,
R.
,
Hosticka
,
B. J.
,
Huppertz
,
J.
,
Kolnsberg
,
S.
,
Mokwa
,
W.
, and
Trieu
,
H. K.
,
2000
, “
Single Chip CMOS Imagers and Flexible Microelectronic Stimulators for a Retina Implant System
,”
Sens. Actuators, A
,
83
(
1
), pp.
40
46
.
104.
Siwapornsathain
,
E.
,
Lal
,
A.
, and
Binard
,
J.
,
2002
, “
A Telemetry and Sensor Platform for Ambulatory Urodynamics
,”
2nd Annual International IEEE-EMBS Special Topic Conference Microtechnologies in Medicine Biology
, pp.
283
287
.
105.
D'Lima
,
D. D.
,
Fregly
,
B. J.
, and
Colwell
,
C. W.
,
2013
, “
Implantable Sensor Technology: Measuring Bone and Joint Biomechanics of Daily Life In Vivo
,”
Arthritis Res. Ther.
,
15
(
1
), p.
203
.
106.
Epari
,
D. R.
,
Lienau
,
J.
,
Schell
,
H.
,
Witt
,
F.
, and
Duda
,
G. N.
,
2008
, “
Pressure, Oxygen Tension and Temperature in the Periosteal Callus During Bone Healing-An In Vivo Study in Sheep
,”
Bone
,
43
(
4
), pp.
734
739
.
107.
Frost
,
M. C.
, and
Meyerhoff
,
M. E.
,
2002
, “
Implantable Chemical Sensors for Real-Time Clinical Monitoring: Progress and Challenges
,”
Curr. Opin. Chem. Biol.
,
6
(
5
), pp.
633
641
.
108.
Langer
,
R.
,
1998
, “
Drug Delivery and Targeting
,”
Nature
,
392
(
6679
), pp.
5
10
.
109.
Azagury
,
A.
,
Khoury
,
L.
,
Enden
,
G.
, and
Kost
,
J.
,
2014
, “
Ultrasound Mediated Transdermal Drug Delivery
,”
Adv. Drug Delivery Rev.
,
72
, pp.
127
143
.
110.
Gao
,
W.
,
Chan
,
J.
, and
Farokhzad
,
O. C.
,
2010
, “
pH-Responsive Nanoparticles for Drug Delivery
,”
Mol. Pharm.
,
7
(
6
), pp.
1913
1920
.
111.
Liu
,
J.
,
Huang
,
Y.
,
Kumar
,
A.
,
Tan
,
A.
,
Jin
,
S.
,
Mozhi
,
A.
, and
Liang
,
X. J.
,
2014
, “
PH-Sensitive Nano-Systems for Drug Delivery in Cancer Therapy
,”
Biotechnol. Adv.
,
32
(
4
), pp.
693
710
.
112.
Bikram
,
M.
,
Gobin
,
A. M.
,
Whitmire
,
R. E.
, and
West
,
J. L.
,
2007
, “
Temperature-Sensitive Hydrogels With SiO2-Au Nanoshells for Controlled Drug Delivery
,”
J. Controlled Release
,
123
(
3
), pp.
219
227
.
113.
Koo
,
A. N.
,
Lee
,
H. J.
,
Kim
,
S. E.
,
Chang
,
J. H.
,
Park
,
C.
,
Kim
,
C.
,
Park
,
J. H.
, and
Lee
,
S. C.
,
2008
, “
Disulfide-Cross-Linked PEG-Poly(Amino Acid)s Copolymer Micelles for Glutathione-Mediated Intracellular Drug Delivery
,”
Chem. Commun. (Cambridge).
,
2008
(
48
), pp.
6570
6572
.
114.
Banerjee
,
J.
,
Hanson
,
A. J.
,
Gadam
,
B.
,
Elegbede
,
A. I.
,
Tobwala
,
S.
,
Ganguly
,
B.
,
Wagh
,
A. V.
,
Muhonen
,
W. W.
,
Law
,
B.
,
Shabb
,
J. B.
,
Srivastava
,
D. K.
, and
Mallik
,
S.
,
2009
, “
Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9
,”
Bioconjugate Chem.
,
20
(
7
), pp.
1332
1339
.
115.
Ge
,
J.
,
Neofytou
,
E.
,
Cahill
,
T. J.
,
Beygui
,
R. E.
, and
Zare
,
R. N.
,
2012
, “
Drug Release From Electric-Field-Responsive Nanoparticles
,”
ACS Nano
,
6
(
1
), pp.
227
233
.
116.
Cai
,
K.
,
Luo
,
Z.
,
Hu
,
Y.
,
Chen
,
X.
,
Liao
,
Y.
,
Yang
,
L.
, and
Deng
,
L.
,
2009
, “
Magnetically Triggered Reversible Controlled Drug Delivery From Microfabricated Polymeric Multireservoir Devices
,”
Adv. Mater.
,
21
(
40
), pp.
4045
4049
.
You do not currently have access to this content.