The function of the heart valve interstitial cells (VICs) is intimately connected to heart valve tissue remodeling and repair, as well as the onset and progression of valvular pathological processes. There is yet only very limited knowledge and extant models for the complex three-dimensional VIC internal stress-bearing structures, the associated cell-level biomechanical behaviors, and how they change under varying activation levels. Importantly, VICs are known to exist and function within the highly dynamic valve tissue environment, including very high physiological loading rates. Yet we have no knowledge on how these factors affect VIC function. To this end, we extended our previous VIC computational continuum mechanics model (Sakamoto, et al., 2016, “On Intrinsic Stress Fiber Contractile Forces in Semilunar Heart Valve Interstitial Cells Using a Continuum Mixture Model,” J. Mech. Behav. Biomed. Mater., 54(244–258)). to incorporate realistic stress-fiber geometries, force-length relations (Hill model for active contraction), explicit α-smooth muscle actin (α-SMA) and F-actin expression levels, and strain rate. Novel micro-indentation measurements were then performed using cytochalasin D (CytoD), variable KCl molar concentrations, both alone and with transforming growth factor β1 (TGF-β1) (which emulates certain valvular pathological processes) to explore how α-SMA and F-actin expression levels influenced stress fiber responses under quasi-static and physiological loading rates. Simulation results indicated that both F-actin and α-SMA contributed substantially to stress fiber force generation, with the highest activation state (90 mM KCL + TGF-β1) inducing the largest α-SMA levels and associated force generation. Validation was performed by comparisons to traction force microscopy studies, which showed very good agreement. Interestingly, only in the highest activation state was strain rate sensitivity observed, which was captured successfully in the simulations. These unique findings demonstrated that only VICs with high levels of αSMA expression exhibited significant viscoelastic effects. Implications of this study include greater insight into the functional role of α-SMA and F-actin in VIC stress fiber function, and the potential for strain rate-dependent effects in pathological states where high levels of α-SMA occur, which appear to be unique to the valvular cellular in vivo microenvironment.

References

References
1.
Schoen
,
F. J.
,
2008
, “
Evolving Concepts of Cardiac Valve Dynamics: The Continuum of Development, Functional Structure, Pathobiology, and Tissue Engineering
,”
Circulation
,
118
(
18
), pp.
1864
1880
.
2.
Sacks
,
M. S.
,
Merryman
,
W. D.
, and
Schmidt
,
D. E.
,
2009
, “
On the Biomechanics of Heart Valve Function
,”
J. Biomech.
,
42
(
12
), pp.
1804
1824
.
3.
Butcher
,
J. T.
,
Simmons
,
C. A.
, and
Warnock
,
J. N.
,
2008
, “
Mechanobiology of the Aortic Heart Valve
,”
J. Heart Valve Dis.
,
17
(
1
), pp.
62
73
.https://www.researchgate.net/publication/5486021_Review_Mechanobiology_of_the_aortic_heart_valve
4.
Rabkin-Aikawa
,
E.
,
Farber
,
M.
,
Aikawa
,
M.
, and
Schoen
,
F. J.
,
2004
, “
Dynamic and Reversible Changes of Interstitial Cell Phenotype During Remodeling of Cardiac Valves
,”
J. Heart Valve Dis.
,
13
(
5
), pp.
841
847
.https://www.researchgate.net/publication/8243286_Dynamic_and_reversible_changes_of_interstitial_cell_phenotype_during_remodeling_of_cardiac_valves
5.
Liu
,
A. C.
,
Joag
,
V. R.
, and
Gotlieb
,
A. I.
,
2007
, “
The Emerging Role of Valve Interstitial Cell Phenotypes in Regulating Heart Valve Pathobiology
,”
Am. J. Pathol.
,
171
(
5
), pp.
1407
1418
.
6.
Schroer
,
A. K.
, and
Merryman
,
W. D.
,
2015
, “
Mechanobiology of Myofibroblast Adhesion in Fibrotic Cardiac Disease
,”
J. Cell Sci.
,
128
(
10
), pp.
1865
1875
.
7.
Lacerda
,
C. M.
,
Kisiday
,
J.
,
Johnson
,
B.
, and
Orton
,
E. C.
,
2012
, “
Local Serotonin Mediates Cyclic Strain-Induced Phenotype Transformation, Matrix Degradation, and Glycosaminoglycan Synthesis in Cultured Sheep Mitral Valves
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
302
(
10
), pp.
H1983
1990
.
8.
Sacks
,
M. S.
,
Enomoto
,
Y.
,
Graybill
,
J. R.
,
Merryman
,
W. D.
,
Zeeshan
,
A.
,
Yoganathan
,
A. P.
,
Levy
,
R. J.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
, 3rd
,
2006
, “
In-Vivo Dynamic Deformation of the Mitral Valve Anterior Leaflet
,”
Ann. Thorac. Surg.
,
82
(
4
), pp.
1369
1377
.
9.
Merryman
,
W. D.
,
Youn
,
I.
,
Lukoff
,
H. D.
,
Krueger
,
P. M.
,
Guilak
,
F.
,
Hopkins
,
R. A.
, and
Sacks
,
M. S.
,
2006
, “
Correlation Between Heart Valve Interstitial Cell Stiffness and Transvalvular Pressure: Implications for Collagen Biosynthesis
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
290
(
1
), pp.
H224
231
.
10.
Merryman
,
W. D.
,
Bieniek
,
P. D.
,
Guilak
,
F.
, and
Sacks
,
M. S.
,
2009
, “
Viscoelastic Properties of the Aortic Valve Interstitial Cell
,”
ASME J. Biomech. Eng.
,
131
(
4
), p.
041005
.
11.
Wyss
,
K.
,
Yip
,
C. Y.
,
Mirzaei
,
Z.
,
Jin
,
X.
,
Chen
,
J.-H.
, and
Simmons
,
C. A.
,
2012
, “
The Elastic Properties of Valve Interstitial Cells Undergoing Pathological Differentiation
,”
J. Biomech.
,
45
(
5
), pp.
882
887
.
12.
Merryman
,
W. D.
,
Liao
,
J.
,
Parekh
,
A.
,
Candiello
,
J. E.
,
Lin
,
H.
, and
Sacks
,
M. S.
,
2007
, “
Differences in Tissue-Remodeling Potential of Aortic and Pulmonary Heart Valve Interstitial Cells
,”
Tissue Eng.
,
13
(
9
), pp.
2281
2289
.
13.
Merryman
,
W. D.
,
Lukoff
,
H. D.
,
Long
,
R. A.
,
Engelmayr
,
G. C.
, Jr.
,
Hopkins
,
R. A.
, and
Sacks
,
M. S.
,
2007
, “
Synergistic Effects of Cyclic Tension and Transforming Growth Factor-Beta1 on the Aortic Valve Myofibroblast
,”
Cardiovasc. Pathol.
,
16
(
5
), pp.
268
276
.
14.
Hinz
,
B.
,
Gabbiani
,
G.
, and
Chaponnier
,
C.
,
2002
, “
The NH2-Terminal Peptide of Alpha-Smooth Muscle Actin Inhibits Force Generation by the Myofibroblast In Vitro and In Vivo
,”
J. Cell Biol.
,
157
(
4
), pp.
657
663
.
15.
Clement
,
S.
,
Hinz
,
B.
,
Dugina
,
V.
,
Gabbiani
,
G.
, and
Chaponnier
,
C.
,
2005
, “
The N-Terminal Ac-EEED Sequence Plays a Role in Alpha-Smooth-Muscle Actin Incorporation Into Stress Fibers
,”
J. Cell Sci.
,
118
(
Pt 7
), pp.
1395
1404
.
16.
Hinz
,
B.
,
Celetta
,
G.
,
Tomasek
,
J. J.
,
Gabbiani
,
G.
, and
Chaponnier
,
C.
,
2001
, “
Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity
,”
Mol. Biol. Cell
,
12
(
9
), pp.
2730
2741
.
17.
Castella
,
L. F.
,
Gabbiani
,
G.
,
Mcculloch
,
C. A.
, and
Hinz
,
B.
,
2010
, “
Regulation of Myofibroblast Activities: Calcium Pulls Some Strings Behind the Scene
,”
Exp. Cell Res.
,
316
(
15
), pp.
2390
2401
.
18.
Chen
,
J.
,
Li
,
H.
,
Sundarraj
,
N.
, and
Wang
,
J. H.
,
2007
, “
Alpha-Smooth Muscle Actin Expression Enhances Cell Traction Force
,”
Cell Motil. Cytoskeleton
,
64
(
4
), pp.
248
257
.
19.
Wang
,
J. H. C.
, and
Lin
,
J. S.
,
2007
, “
Cell Traction Force and Measurement Methods
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
361
371
.
20.
Deshpande
,
V. S.
,
Mcmeeking
,
R. M.
, and
Evans
,
A. G.
,
2006
, “
A Bio-Chemo-Mechanical Model for Cell Contractility
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
38
), pp.
14015
14020
.
21.
Mcgarry
,
J. P.
,
2009
, “
Characterization of Cell Mechanical Properties by Computational Modeling of Parallel Plate Compression
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2317
2325
.
22.
Dowling
,
E. P.
,
Ronan
,
W.
, and
Mcgarry
,
J. P.
,
2013
, “
Computational Investigation of In Situ Chondrocyte Deformation and Actin Cytoskeleton Remodelling Under Physiological Loading
,”
Acta Biomater.
,
9
(
4
), pp.
5943
5955
.
23.
Reynolds
,
N. H.
, and
Mcgarry
,
J. P.
,
2015
, “
Single Cell Active Force Generation Under Dynamic Loading—Part II: Active Modelling Insights
,”
Acta Biomater.
,
27
, pp.
251
263
.
24.
Reynolds
,
N. H.
,
Ronan
,
W.
,
Dowling
,
E. P.
,
Owens
,
P.
,
Mcmeeking
,
R. M.
, and
Mcgarry
,
J. P.
,
2014
, “
On the Role of the Actin Cytoskeleton and Nucleus in the Biomechanical Response of Spread Cells
,”
Biomaterials
,
35
(
13
), pp.
4015
4025
.
25.
Vernerey
,
F. J.
, and
Farsad
,
M.
,
2011
, “
An Eulerian/XFEM Formulation for the Large Deformation of Cortical Cell Membrane
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
5
), pp.
433
445
.
26.
Sakamoto
,
Y.
,
Buchanan
,
R. M.
, and
Sacks
,
M. S.
,
2016
, “
On Intrinsic Stress Fiber Contractile Forces in Semilunar Heart Valve Interstitial Cells Using a Continuum Mixture Model
,”
J. Mech. Behav. Biomed. Mater.
,
54
, pp.
244
258
.
27.
Carlson
,
F. D.
, and
Wilkie
,
D. R.
,
1974
,
Muscle Physiology
(Prentice-Hall Biological Science Series),
Prentice-Hall
,
Englewood Cliffs, NJ
.
28.
Deguchi
,
S.
, and
Sato
,
M.
,
2009
, “
Biomechanical Properties of Actin Stress Fibers of Non-Motile Cells
,”
Biorheology
,
46
(
2
), pp.
93
105
.
29.
Vernerey
,
F. J.
, and
Farsad
,
M.
,
2011
, “
A Constrained Mixture Approach to Mechano-Sensing and Force Generation in Contractile Cells
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1683
1699
.
30.
Clark-Greuel
,
J. N.
,
Connolly
,
J. M.
,
Sorichillo
,
E.
,
Narula
,
N. R.
,
Rapoport
,
H. S.
,
Mohler
,
E. R.
,
3rd
,
Gorman
,
J. H.
, 3rd
,
Gorman
,
R. C.
, and
Levy
,
R. J.
,
2007
, “
Transforming Growth Factor-Beta1 Mechanisms in Aortic Valve Calcification: Increased Alkaline Phosphatase and Related Events
,”
Ann. Thorac. Surg.
,
83
(
3
), pp.
946
953
.
31.
Osman
,
L.
,
Yacoub
,
M. H.
,
Latif
,
N.
,
Amrani
,
M.
, and
Chester
,
A. H.
,
2006
, “
Role of Human Valve Interstitial Cells in Valve Calcification and Their Response to Atorvastatin
,”
Circulation
,
114
(
1 Suppl.
), pp.
I547
I552
.
32.
Jian
,
B.
,
Narula
,
N.
,
Li
,
Q. Y.
,
Mohler
,
E. R.
, 3rd
, and
Levy
,
R. J.
,
2003
, “
Progression of Aortic Valve Stenosis: TGF-Beta1 Is Present in Calcified Aortic Valve Cusps and Promotes Aortic Valve Interstitial Cell Calcification Via Apoptosis
,”
Ann. Thorac. Surg.
,
75
(
2
), pp.
457
465; discussion 465–466
.
33.
Walker
,
G. A.
,
Masters
,
K. S.
,
Shah
,
D. N.
,
Anseth
,
K. S.
, and
Leinwand
,
L. A.
,
2004
, “
Valvular Myofibroblast Activation by Transforming Growth Factor-Beta: Implications for Pathological Extracellular Matrix Remodeling in Heart Valve Disease
,”
Circ. Res.
,
95
(
3
), pp.
253
260
.
34.
Branchetti
,
E.
,
Sainger
,
R.
,
Poggio
,
P.
,
Grau
,
J. B.
,
Patterson-Fortin
,
J.
,
Bavaria
,
J. E.
,
Chorny
,
M.
,
Lai
,
E.
,
Gorman
,
R. C.
,
Levy
,
R. J.
, and
Ferrari
,
G.
,
2013
, “
Antioxidant Enzymes Reduce DNA Damage and Early Activation of Valvular Interstitial Cells in Aortic Valve Sclerosis
,”
Arterioscler., Thromb., Vasc. Biol.
,
33
(
2
), pp.
e66
74
.
35.
Guo
,
S.
, and
Akhremitchev
,
B. B.
,
2006
, “
Packing Density and Structural Heterogeneity of Insulin Amyloid Fibrils Measured by AFM Nanoindentation
,”
Biomacromolecules
,
7
(
5
), pp.
1630
1636
.
36.
Dimitriadis
,
E. K.
,
Horkay
,
F.
,
Maresca
,
J.
,
Kachar
,
B.
, and
Chadwick
,
R. S.
,
2002
, “
Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope
,”
Biophys. J.
,
82
(
5
), pp.
2798
2810
.
37.
Schindelin
,
J.
,
Arganda-Carreras
,
I.
,
Frise
,
E.
,
Kaynig
,
V.
,
Longair
,
M.
,
Pietzsch
,
T.
,
Preibisch
,
S.
,
Rueden
,
C.
,
Saalfeld
,
S.
,
Schmid
,
B.
,
Tinevez
,
J. Y.
,
White
,
D. J.
,
Hartenstein
,
V.
,
Eliceiri
,
K.
,
Tomancak
,
P.
, and
Cardona
,
A.
,
2012
, “
Fiji: An Open-Source Platform for Biological-Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
676
682
.
38.
Hinz
,
B.
,
2010
, “
The Myofibroblast: Paradigm for a Mechanically Active Cell
,”
J. Biomech.
,
43
(
1
), pp.
146
155
.
39.
Gouget
,
C. L.
,
Girard
,
M. J.
, and
Ethier
,
C. R.
,
2012
, “
A Constrained Von Mises Distribution to Describe Fiber Organization in Thin Soft Tissues
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
475
482
.
40.
Hinz
,
B.
, and
Gabbiani
,
G.
,
2003
, “
Mechanisms of Force Generation and Transmission by Myofibroblasts
,”
Curr. Opin. Biotechnol.
,
14
(
5
), pp.
538
546
.
41.
Hinz
,
B.
,
Phan
,
S. H.
,
Thannickal
,
V. J.
,
Prunotto
,
M.
,
Desmouliere
,
A.
,
Varga
,
J.
,
De Wever
,
O.
,
Mareel
,
M.
, and
Gabbian
,
G.
,
2012
, “
Recent Developments in Myofibroblast Biology Paradigms for Connective Tissue Remodeling
,”
Am. J. Pathol.
,
180
(
4
), pp.
1340
1355
.
42.
Merryman
,
W. D.
,
2007
, “
Mechanobiology of the Aortic Valve Interstitial Cell
,”
Doctoral dissertation
, University of Pittsburgh, Pittsburgh, PA.http://d-scholarship.pitt.edu/8153/1/MerrymanETDv3.pdf
43.
Chen
,
M.
,
Patra
,
P. K.
,
Warner
,
S. B.
, and
Bhowmick
,
S.
,
2007
, “
Role of Fiber Diameter in Adhesion and Proliferation of NIH 3T3 Fibroblast on Electrospun Polycaprolactone Scaffolds
,”
Tissue Eng.
,
13
(
3
), pp.
579
587
.
44.
Wang
,
J.
,
Zohar
,
R.
, and
Mcculloch
,
C. A.
,
2006
, “
Multiple Roles of Alpha-Smooth Muscle Actin in Mechanotransduction
,”
Exp. Cell Res.
,
312
(
3
), pp.
205
214
.
45.
Edman
,
K. A.
,
1966
, “
The Relation Between Sarcomere Length and Active Tension in Isolated Semitendinosus Fibres of the Frog
,”
J. Physiol.
,
183
(
2
), pp.
407
417
.
46.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.
47.
Goffin
,
J. M.
,
Pittet
,
P.
,
Csucs
,
G.
,
Lussi
,
J. W.
,
Meister
,
J. J.
, and
Hinz
,
B.
,
2006
, “
Focal Adhesion Size Controls Tension-Dependent Recruitment of Alpha-Smooth Muscle Actin to Stress Fibers
,”
J. Cell Biol.
,
172
(
2
), pp.
259
268
.
48.
Katoh
,
K.
,
Kano
,
Y.
,
Amano
,
M.
,
Onishi
,
H.
,
Kaibuchi
,
K.
, and
Fujiwara
,
K.
,
2001
, “
Rho-Kinase–Mediated Contraction of Isolated Stress Fibers
,”
J. Cell Biol.
,
153
(
3
), pp.
569
584
.
49.
Deguchi
,
S.
,
Ohashi
,
T.
, and
Sato
,
M.
,
2006
, “
Tensile Properties of Single Stress Fibers Isolated From Cultured Vascular Smooth Muscle Cells
,”
J. Biomech.
,
39
(
14
), pp.
2603
2610
.
50.
Kumar
,
S.
,
Maxwell
,
I. Z.
,
Heisterkamp
,
A.
,
Polte
,
T. R.
,
Lele
,
T. P.
,
Salanga
,
M.
,
Mazur
,
E.
, and
Ingber
,
D. E.
,
2006
, “
Viscoelastic Retraction of Single Living Stress Fibers and Its Impact on Cell Shape, Cytoskeletal Organization, and Extracellular Matrix Mechanics
,”
Biophys. J.
,
90
(
10
), pp.
3762
3773
.
51.
Li
,
B.
, and
Wang
,
J. H.
,
2011
, “
Fibroblasts and Myofibroblasts in Wound Healing: Force Generation and Measurement
,”
J. Tissue Viability
,
20
(
4
), pp.
108
120
.
52.
Cirka
,
H.
,
Monterosso
,
M.
,
Diamantides
,
N.
,
Favreau
,
J.
,
Wen
,
Q.
, and
Billiar
,
K.
,
2016
, “
Active Traction Force Response to Long-Term Cyclic Stretch Is Dependent on Cell Pre-Stress
,”
Biophys. J.
,
110
(
8
), pp.
1845
1857
.
53.
Peterson
,
L. J.
,
Rajfur
,
Z.
,
Maddox
,
A. S.
,
Freel
,
C. D.
,
Chen
,
Y.
,
Edlund
,
M.
,
Otey
,
C.
, and
Burridge
,
K.
,
2004
, “
Simultaneous Stretching and Contraction of Stress Fibers in vivo
,”
Mol. Biol. Cell
,
15
(
7
), pp.
3497
3508
.
54.
Sacks
,
M. S.
,
He
,
Z.
,
Baijens
,
L.
,
Wanant
,
S.
,
Shah
,
P.
,
Sugimoto
,
H.
, and
Yoganathan
,
A. P.
,
2002
, “
Surface Strains in the Anterior Leaflet of the Functioning Mitral Valve
,”
Ann. Biomed. Eng.
,
30
(
10
), pp.
1281
1290
.
55.
Lee
,
C.-H.
,
Feaver
,
K.
,
Zhang
,
W.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2016
, “
Inverse Modeling Based Estimation of in vivo Stresses and Their Relation to Simulated Layer-Specific Interstitial Cell Deformations in the Mitral Valve
,” Proceedings of the SB3C, National Harbor, MD.
56.
Lieleg
,
O.
,
Claessens
,
M. M.
,
Luan
,
Y.
, and
Bausch
,
A. R.
,
2008
, “
Transient Binding and Dissipation in Cross-Linked Actin Networks
,”
Phys. Rev. Lett.
,
101
(
10
), p.
108101
.
57.
Kloxin
,
A. M.
,
Benton
,
J. A.
, and
Anseth
,
K. S.
,
2010
, “
In Situ Elasticity Modulation With Dynamic Substrates to Direct Cell Phenotype
,”
Biomaterials
,
31
(
1
), pp.
1
8
.
58.
Duan
,
B.
,
Yin
,
Z.
,
Kang
,
L. H.
,
Magin
,
R. L.
, and
Butcher
,
J. T.
,
2016
, “
Active Tissue Stiffness Modulation Controls Valve Interstitial Cell Phenotype and Osteogenic Potential in 3d Culture
,”
Acta Biomater.
,
36
, pp.
42
54
.
59.
Liu
,
H.
,
Sun
,
Y.
, and
Simmons
,
C. A.
,
2013
, “
Determination of Local and Global Elastic Moduli of Valve Interstitial Cells Cultured on Soft Substrates
,”
J. Biomech.
,
46
(
11
), pp.
1967
1971
.
60.
Gould
,
S. T.
, and
Anseth
,
K. S.
,
2013
, “
Role of Cell-Matrix Interactions on VIC Phenotype and Tissue Deposition in 3D PEG Hydrogels
,”
J. Tissue Eng. Regener. Med.
,
10
(
10
), pp.
E443
E453
.
You do not currently have access to this content.