Cerebral aneurysms are pathological focal evaginations of the arterial wall at and around the junctions of the circle of Willis. Their tenuous walls predispose aneurysms to leak or rupture leading to hemorrhagic strokes with high morbidity and mortality rates. The endovascular treatment of cerebral aneurysms currently includes the implantation of fine-mesh stents, called flow diverters, within the parent artery bearing the aneurysm. By mitigating flow velocities within the aneurysmal sac, the devices preferentially induce thrombus formation in the aneurysm within hours to days. In response to the foreign implant, an endothelialized arterial layer covers the luminal surface of the device over a period of days to months. Organization of the intraneurysmal thrombus leads to resorption and shrinkage of the aneurysm wall and contents, eventually leading to beneficial remodeling of the pathological site to a near-physiological state. The devices' primary function of reducing flow activity within aneurysms is corollary to their mesh structure. Complete specification of the device mesh structure, or alternately device permeability, necessarily involves the quantification of two variables commonly used to characterize porous media—mesh porosity and mesh pore density. We evaluated the flow alteration induced by five commercial neurovascular devices of varying porosity and pore density (stents: Neuroform, Enterprise, and LVIS; flow diverters: Pipeline and FRED) in an idealized sidewall aneurysm model. As can be expected in such a model, all devices substantially reduced intraneurysmal kinetic energy as compared to the nonstented case with the coarse-mesh stents inducing a 65–80% reduction whereas the fine-mesh flow diverters induced a near-complete flow stagnation (∼98% reduction). We also note a trend toward greater device efficacy (lower intraneurysmal flow) with decreasing device porosity and increasing device pore density. Several such flow studies have been and are being conducted in idealized as well as patient-derived geometries with the overarching goals of improving device design, facilitating treatment planning (what is the optimal device for a specific aneurysm), and predicting treatment outcome (will a specific aneurysm treated with a specific device successfully occlude over the long term). While the results are generally encouraging, there is poor standardization of study variables between different research groups, and any consensus will only be reached after standardized studies are conducted on collectively large datasets. Biochemical variables may have to be incorporated into these studies to maximize predictive values.

References

1.
Dullien
,
F. A. L.
, and
Batra
,
V. K.
,
1970
, “
Determination of the Structure of Porous Media
,”
Ind. Eng. Chem.
,
62
(
10
), pp.
25
53
.
2.
Koponen
,
A.
,
Kataja
,
M.
, and
Timonen
,
J.
,
1997
, “
Permeability and Effective Porosity of Porous Media
,”
Phys. Rev. E
,
56
(
3
), pp.
3319
3325
.
3.
Neithalath
,
N.
,
Sumanasooriya
,
M. S.
, and
Deo
,
O.
,
2010
, “
Characterizing Pore Volume, Sizes, and Connectivity in Pervious Concretes for Permeability Prediction
,”
Mater. Charact.
,
61
(
8
), pp.
802
813
.
4.
Jou
,
L. D.
,
Chintalapani
,
G.
, and
Mawad
,
M. E.
,
2016
, “
Metal Coverage Ratio of Pipeline Embolization Device for Treatment of Unruptured Aneurysms: Reality Check
,”
Interventional Neuroradiology
,
22
(
1
), pp.
42
48
.
5.
Aenis
,
M.
,
Stancampiano
,
A. P.
,
Wakhloo
,
A. K.
, and
Lieber
,
B. B.
,
1997
, “
Modeling of Flow in a Straight Stented and Nonstented Side Wall Aneurysm Model
,”
ASME J. Biomech. Eng.
,
119
(
2
), pp.
206
212
.
6.
Lieber
,
B. B.
,
Stancampiano
,
A. P.
, and
Wakhloo
,
A. K.
,
1997
, “
Alteration of Hemodynamics in Aneurysm Models by Stenting: Influence of Stent Porosity
,”
Ann. Biomed. Eng.
,
25
(
3
), pp.
460
469
.
7.
Seong
,
J.
,
Wakhloo
,
A. K.
, and
Lieber
,
B. B.
,
2007
, “
In Vitro Evaluation of Flow Divertors in an Elastase-Induced Saccular Aneurysm Model in Rabbit
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
863
872
.
8.
Stuhne
,
G. R.
, and
Steinman
,
D. A.
,
2004
, “
Finite-Element Modeling of the Hemodynamics of Stented Aneurysms
,”
ASME J. Biomech. Eng.
,
126
(
3
), pp.
382
387
.
9.
Kulcsar
,
Z.
,
Augsburger
,
L.
,
Reymond
,
P.
,
Pereira
,
V. M.
,
Hirsch
,
S.
,
Mallik
,
A. S.
,
Millar
,
J.
,
Wetzel
,
S. G.
,
Wanke
,
I.
, and
Rufenacht
,
D. A.
,
2012
, “
Flow Diversion Treatment: Intra-Aneurismal Blood Flow Velocity and WSS Reduction are Parameters to Predict Aneurysm Thrombosis
,”
Acta Neurochir.
,
154
(
10
), pp.
1827
1834
.
10.
Mut
,
F.
,
Raschi
,
M.
,
Scrivano
,
E.
,
Bleise
,
C.
,
Chudyk
,
J.
,
Ceratto
,
R.
,
Lylyk
,
P.
, and
Cebral
,
J. R.
,
2015
, “
Association Between Hemodynamic Conditions and Occlusion Times After Flow Diversion in Cerebral Aneurysms
,”
J. Neurointerventional Surg.
,
7
(
4
), pp.
286
290
.
11.
Larrabide
,
I.
,
Geers
,
A. J.
,
Morales
,
H. G.
,
Aguilar
,
M. L.
, and
Rufenacht
,
D. A.
,
2015
, “
Effect of Aneurysm and ICA Morphology on Hemodynamics Before and After Flow Diverter Treatment
,”
J. Neurointerventional Surg.
,
7
(
4
), pp.
272
280
.
12.
Rhee
,
K.
,
Han
,
M. H.
, and
Cha
,
S. H.
,
2002
, “
Changes of Flow Characteristics by Stenting in Aneurysm Models: Influence of Aneurysm Geometry and Stent Porosity
,”
Ann. Biomed. Eng.
,
30
(
7
), pp.
894
904
.
13.
Liou
,
T. M.
,
Liou
,
S. N.
, and
Chu
,
K. L.
,
2004
, “
Intra-Aneurysmal Flow With Helix and Mesh Stent Placement Across Side-Wall Aneurysm Pore of a Straight Parent Vessel
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
36
43
.
14.
Sadasivan
,
C.
,
Fiorella
,
D. J.
,
Woo
,
H. H.
, and
Lieber
,
B. B.
,
2013
, “
Physical Factors Effecting Cerebral Aneurysm Pathophysiology
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1347
1365
.
15.
Lieber
,
B. B.
,
Livescu
,
V.
,
Hopkins
,
L. N.
, and
Wakhloo
,
A. K.
,
2002
, “
Particle Image Velocimetry Assessment of Stent Design Influence on Intra-Aneurysmal Flow
,”
Ann. Biomed. Eng.
,
30
(
6
), pp.
768
777
.
16.
Yu
,
S. C.
, and
Zhao
,
J. B.
,
1999
, “
A Steady Flow Analysis on the Stented and Non-Stented Sidewall Aneurysm Models
,”
Med. Eng. Phys.
,
21
(
3
), pp.
133
141
.
17.
Seshadhri
,
S.
,
Janiga
,
G.
,
Beuing
,
O.
,
Skalej
,
M.
, and
Thevenin
,
D.
,
2011
, “
Impact of Stents and Flow Diverters on Hemodynamics in Idealized Aneurysm Models
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071005
.
18.
Trager
,
A. L.
,
Sadasivan
,
C.
, and
Lieber
,
B. B.
,
2012
, “
Comparison of the In Vitro Hemodynamic Performance of New Flow Diverters for Bypass of Brain Aneurysms
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
084505
.
19.
Bouillot
,
P.
,
Brina
,
O.
,
Ouared
,
R.
,
Yilmaz
,
H.
,
Lovblad
,
K. O.
,
Farhat
,
M.
, and
Mendes Pereira
,
V.
,
2016
, “
Computational Fluid Dynamics With Stents: Quantitative Comparison With Particle Image Velocimetry for Three Commercial Off the Shelf Intracranial Stents
,”
J. Neurointerventional Surg.
,
8
(
3
), pp.
309
315
.
20.
Dennis
,
K. D.
,
Rossman
,
T. L.
,
Kallmes
,
D. F.
, and
Dragomir-Daescu
,
D.
,
2015
, “
Intra-Aneurysmal Flow Rates Are Reduced by Two Flow Diverters: An Experiment Using Tomographic Particle Image Velocimetry in an Aneurysm Model
,”
J. Neurointerventional Surg.
,
7
(
12
), pp.
937
942
.
21.
Roszelle
,
B. N.
,
Gonzalez
,
L. F.
,
Babiker
,
M. H.
,
Ryan
,
J.
,
Albuquerque
,
F. C.
, and
Frakes
,
D. H.
,
2013
, “
Flow Diverter Effect on Cerebral Aneurysm Hemodynamics: An In Vitro Comparison of Telescoping Stents and the Pipeline
,”
Neuroradiology
,
55
(
6
), pp.
751
758
.
22.
Cebral
,
J. R.
,
Mut
,
F.
,
Raschi
,
M.
,
Hodis
,
S.
,
Ding
,
Y. H.
,
Erickson
,
B. J.
,
Kadirvel
,
R.
, and
Kallmes
,
D. F.
,
2014
, “
Analysis of Hemodynamics and Aneurysm Occlusion After Flow-Diverting Treatment in Rabbit Models
,”
AJNR
,
35
(
8
), pp.
1567
1573
.
23.
Huang
,
Q.
,
Xu
,
J.
,
Cheng
,
J.
,
Wang
,
S.
,
Wang
,
K.
, and
Liu
,
J. M.
,
2013
, “
Hemodynamic Changes by Flow Diverters in Rabbit Aneurysm Models: A Computational Fluid Dynamic Study Based on Micro-Computed Tomography Reconstruction
,”
Stroke
,
44
(
7
), pp.
1936
1941
.
24.
Ouared
,
R.
,
Larrabide
,
I.
,
Brina
,
O.
,
Bouillot
,
P.
,
Erceg
,
G.
,
Yilmaz
,
H.
,
Lovblad
,
K. O.
, and
Mendes Pereira
,
V.
, “
Computational Fluid Dynamics Analysis of Flow Reduction Induced by Flow-Diverting Stents in Intracranial Aneurysms: A Patient-Unspecific Hemodynamics Change Perspective
,”
J. Neurointerventional Surg.
, epub.
25.
Jing
,
L.
,
Zhong
,
J.
,
Liu
,
J.
,
Yang
,
X.
,
Paliwal
,
N.
,
Meng
,
H.
,
Wang
,
S.
, and
Zhang
,
Y.
,
2016
, “
Hemodynamic Effect of Flow Diverter and Coils in Treatment of Large and Giant Intracranial Aneurysms
,”
World Neurosurg.
,
89
, pp.
199
207
.
26.
Karmonik
,
C.
,
Chintalapani
,
G.
,
Redel
,
T.
,
Zhang
,
Y. J.
,
Diaz
,
O.
,
Klucznik
,
R.
, and
Grossman
,
R. G.
,
2013
, “
Hemodynamics at the Ostium of Cerebral Aneurysms With Relation to Post-Treatment Changes by a Virtual Flow Diverter: A Computational Fluid Dynamics Study
,”
35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), July 3–7, pp.
1895
1898
.
27.
Tsang
,
A. C.
,
Lai
,
S. S.
,
Chung
,
W. C.
,
Tang
,
A. Y.
,
Leung
,
G. K.
,
Poon
,
A. K.
,
Yu
,
A. C.
, and
Chow
,
K. W.
,
2015
, “
Blood Flow in Intracranial Aneurysms Treated With Pipeline Embolization Devices: Computational Simulation and Verification With Doppler Ultrasonography on Phantom Models
,”
Ultrasonography
,
34
(
2
), pp.
98
108
.
28.
Kojima
,
M.
,
Irie
,
K.
,
Fukuda
,
T.
,
Arai
,
F.
,
Hirose
,
Y.
, and
Negoro
,
M.
,
2012
, “
The Study of Flow Diversion Effects on Aneurysm Using Multiple Enterprise Stents and Two Flow Diverters
,”
Asian J. Neurosurg.
,
7
(
4
), pp.
159
165
.
29.
Janiga
,
G.
,
Daroczy
,
L.
,
Berg
,
P.
,
Thevenin
,
D.
,
Skalej
,
M.
, and
Beuing
,
O.
,
2015
, “
An Automatic CFD-Based Flow Diverter Optimization Principle for Patient-Specific Intracranial Aneurysms
,”
J. Biomech.
,
48
(
14
), pp.
3846
3852
.
30.
Shobayashi
,
Y.
,
Tateshima
,
S.
,
Kakizaki
,
R.
,
Sudo
,
R.
,
Tanishita
,
K.
, and
Vinuela
,
F.
,
2013
, “
Intra-Aneurysmal Hemodynamic Alterations by a Self-Expandable Intracranial Stent and Flow Diversion Stent: High Intra-Aneurysmal Pressure Remains Regardless of Flow Velocity Reduction
,”
J. Neurointerventional Surg.
,
5
(
Suppl. 3
), pp.
iii38
iii42
.
31.
Augsburger
,
L.
,
Reymond
,
P.
,
Rufenacht
,
D. A.
, and
Stergiopulos
,
N.
,
2011
, “
Intracranial Stents Being Modeled as a Porous Medium: Flow Simulation in Stented Cerebral Aneurysms
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
850
863
.
32.
Sadasivan
,
C.
,
Cesar
,
L.
,
Seong
,
J.
,
Wakhloo
,
A. K.
, and
Lieber
,
B. B.
,
2009
, “
Treatment of Rabbit Elastase-Induced Aneurysm Models by Flow Diverters: Development of Quantifiable Indexes of Device Performance Using Digital Subtraction Angiography
,”
IEEE Trans. Med. Imaging
,
28
(
7
), pp.
1117
1125
.
33.
Grunwald
,
I. Q.
,
Kamran
,
M.
,
Corkill
,
R. A.
,
Kuhn
,
A. L.
,
Choi
,
I. S.
,
Turnbull
,
S.
,
Dobson
,
D.
,
Fassbender
,
K.
,
Watson
,
D.
, and
Gounis
,
M. J.
,
2012
, “
Simple Measurement of Aneurysm Residual After Treatment: The SMART Scale for Evaluation of Intracranial Aneurysms Treated With Flow Diverters
,”
Acta Neurochir.
,
154
(
1
), pp.
21
26
; Discussion 26.
34.
Joshi
,
M. D.
,
O'Kelly
,
C. J.
,
Krings
,
T.
,
Fiorella
,
D.
, and
Marotta
,
T. R.
,
2013
, “
Observer Variability of an Angiographic Grading Scale Used for the Assessment of Intracranial Aneurysms Treated With Flow-Diverting Stents
,”
AJNR
,
34
(
8
), pp.
1589
1592
.
35.
Struffert
,
T.
,
Ott
,
S.
,
Kowarschik
,
M.
,
Bender
,
F.
,
Adamek
,
E.
,
Engelhorn
,
T.
,
Golitz
,
P.
,
Lang
,
S.
,
Strother
,
C. M.
, and
Doerfler
,
A.
,
2013
, “
Measurement of Quantifiable Parameters by Time-Density Curves in the Elastase-Induced Aneurysm Model: First Results in the Comparison of a Flow Diverter and a Conventional Aneurysm Stent
,”
Eur. Radiol.
,
23
(
2
), pp.
521
527
.
36.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows
,”
Biorheology
,
28
(
3–4
), pp.
241
262
.https://www.researchgate.net/profile/Young_Cho5/publication/21222708_Effects_of_the_non-Newtonian_viscosity_of_blood_flows_in_a_diseased_arterial_vessel_Part_I_steady_flows/links/541ed8b90cf203f155c247b6.pdf
37.
Ohta
,
M.
,
Wetzel
,
S. G.
,
Dantan
,
P.
,
Bachelet
,
C.
,
Lovblad
,
K. O.
,
Yilmaz
,
H.
,
Flaud
,
P.
, and
Rufenacht
,
D. A.
,
2005
, “
Rheological Changes After Stenting of a Cerebral Aneurysm: A Finite Element Modeling Approach
,”
Cardiovasc. Interventional Radiol.
,
28
(
6
), pp.
768
772
.
38.
Tateshima
,
S.
,
Jones
,
J. G.
,
Mayor Basto
,
F.
,
Vinuela
,
F.
, and
Duckwiler
,
G. R.
,
2014
, “
Aneurysm Pressure Measurement Before and After Placement of a Pipeline Stent: Feasibility Study Using a 0.014 Inch Pressure Wire for Coronary Intervention
,”
J. Neurointerventional Surg.
,
8
(
6
), pp.
603
607
.
39.
Augsburger
,
L.
,
Farhat
,
M.
,
Reymond
,
P.
,
Fonck
,
E.
,
Kulcsar
,
Z.
,
Stergiopulos
,
N.
, and
Rufenacht
,
D. A.
,
2009
, “
Effect of Flow Diverter Porosity on Intraaneurysmal Blood Flow
,”
Klin. Neuroradiologie
,
19
(
3
), pp.
204
214
.
40.
Rayepalli
,
S.
,
Gupta
,
R.
,
Lum
,
C.
,
Majid
,
A.
, and
Koochesfahani
,
M.
,
2013
, “
The Impact of Stent Strut Porosity on Reducing Flow in Cerebral Aneurysms
,”
J. Neuroimaging
,
23
(
4
), pp.
495
501
.
41.
Yu
,
C. H.
, and
Kwon
,
T. K.
,
2014
, “
Study of Parameters for Evaluating Flow Reduction With Stents in a Sidewall Aneurysm Phantom Model
,”
Biomed. Mater. Eng.
,
24
(
6
), pp.
2417
2424
.
42.
Lee
,
C. J.
,
Srinivas
,
K.
, and
Qian
,
Y.
,
2014
, “
Three-Dimensional Hemodynamic Design Optimization of Stents for Cerebral Aneurysms
,”
Proc. Inst. Mech. Eng., Part H
,
228
(
3
), pp.
213
224
.
43.
Brinjikji
,
W.
,
Murad
,
M. H.
,
Lanzino
,
G.
,
Cloft
,
H. J.
, and
Kallmes
,
D. F.
,
2013
, “
Endovascular Treatment of Intracranial Aneurysms With Flow Diverters: A Meta-Analysis
,”
Stroke
,
44
(
2
), pp.
442
447
.
44.
Cebral
,
J. R.
,
Raschi
,
M.
,
Mut
,
F.
,
Ding
,
Y. H.
,
Dai
,
D.
,
Kadirvel
,
R.
, and
Kallmes
,
D.
,
2014
, “
Analysis of Flow Changes in Side Branches Jailed by Flow Diverters in Rabbit Models
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
10
), pp.
988
999
.
45.
Hu
,
P.
,
Qian
,
Y.
,
Zhang
,
Y.
,
Zhang
,
H. Q.
,
Li
,
Y.
,
Chong
,
W.
, and
Ling
,
F.
,
2015
, “
Blood Flow Reduction of Covered Small Side Branches After Flow Diverter Treatment: A Computational Fluid Hemodynamic Quantitative Analysis
,”
J. Biomech.
,
48
(
6
), pp.
895
898
.
46.
Tang
,
A. Y.
,
Chung
,
W. C.
,
Liu
,
E. T.
,
Qu
,
J. Q.
,
Tsang
,
A. C.
,
Leung
,
G. K.
,
Leung
,
K. M.
,
Yu
,
A. C.
, and
Chow
,
K. W.
,
2015
, “
Computational Fluid Dynamics Study of Bifurcation Aneurysms Treated With Pipeline Embolization Device: Side Branch Diameter Study
,”
J. Med. Biol. Eng.
,
35
(
3
), pp.
293
304
.
47.
Makoyeva
,
A.
,
Bing
,
F.
,
Darsaut
,
T. E.
,
Salazkin
,
I.
, and
Raymond
,
J.
,
2013
, “
The Varying Porosity of Braided Self-Expanding Stents and Flow Diverters: An Experimental Study
,”
AJNR
,
34
(
3
), pp.
596
602
.
48.
Karunanithi
,
K.
,
Lee
,
C. J.
,
Chong
,
W.
, and
Qian
,
Y.
,
2015
, “
The Influence of Flow Diverter's Angle of Curvature Across the Aneurysm Neck on Its Haemodynamics
,”
Proc. Inst. Mech. Eng., Part H
,
229
(
8
), pp.
560
569
.
49.
Patel
,
N. V.
,
Gounis
,
M. J.
,
Wakhloo
,
A. K.
,
Noordhoek
,
N.
,
Blijd
,
J.
,
Babic
,
D.
,
Takhtani
,
D.
,
Lee
,
S. K.
, and
Norbash
,
A.
,
2011
, “
Contrast-Enhanced Angiographic Cone-Beam CT of Cerebrovascular Stents: Experimental Optimization and Clinical Application
,”
AJNR
,
32
(
1
), pp.
137
144
.
50.
Raymond
,
J.
,
Darsaut
,
T. E.
,
Bing
,
F.
,
Makoyeva
,
A.
,
Kotowski
,
M.
,
Gevry
,
G.
, and
Salazkin
,
I.
,
2013
, “
Stent-Assisted Coiling of Bifurcation Aneurysms May Improve Endovascular Treatment: A Critical Evaluation in an Experimental Model
,”
AJNR
,
34
(
3
), pp.
570
576
.
51.
Gwilliam
,
M. N.
,
Hoggard
,
N.
,
Capener
,
D.
,
Singh
,
P.
,
Marzo
,
A.
,
Verma
,
P. K.
, and
Wilkinson
,
I. D.
,
2009
, “
MR Derived Volumetric Flow Rate Waveforms at Locations Within the Common Carotid, Internal Carotid, and Basilar Arteries
,”
J. Cereb. Blood Flow Metab.
,
29
(
12
), pp.
1975
1982
.
52.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.
53.
Bathe
,
K.-J.
, and
Bathe
,
K.-J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
54.
Fiorella
,
D.
,
Arthur
,
A.
,
Boulos
,
A.
,
Diaz
,
O.
,
Jabbour
,
P.
,
Pride
,
L.
,
Turk
,
A. S.
,
Woo
,
H. H.
,
Derdeyn
,
C.
,
Millar
,
J.
, and
Clifton
,
A.
,
2016
, “
Final Results of the U.S. Humanitarian Device Exemption Study of the Low-Profile Visualized Intraluminal Support (LVIS) Device
,”
J. Neurointerventional Surg.
,
8
(
9
), pp.
894
897
.
55.
Dholakia
,
R.
,
Drakopoulos
,
F.
,
Sadasivan
,
C.
,
Jiao
,
X.
,
Fiorella
,
D. J.
,
Woo
,
H. H.
,
Lieber
,
B. B.
, and
Chrisochoides
,
N.
,
2015
, “
High Fidelity Image-to-Mesh Conversion for Brain Aneurysm/Stent Geometries
,”
IEEE
International Symposium on Biomedical Imaging
.https://crtc.cs.odu.edu/pub/papers/conf_153.pdf
56.
Foteinos
,
P.
, and
Chrisochoides
,
N.
,
2013
, “
High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations
,”
27th ACM International Conference on Supercomputing (ICS'13)
, pp.
233
242
.
57.
Foteinos
,
P.
, and
Chrisochoides
,
N.
,
2014
, “
High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations
,”
J. Parallel Distrib. Comput.
,
74
(
2
), pp.
2123
2140
.
58.
Stewart
,
S. C.
,
Paterson
,
E.
,
Burgreen
,
G.
,
Hariharan
,
P.
,
Giarra
,
M.
,
Reddy
,
V.
,
Day
,
S.
,
Manning
,
K.
,
Deutsch
,
S.
,
Berman
,
M.
,
Myers
,
M.
, and
Malinauskas
,
R.
,
2012
, “
Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of FDA's First Computational Interlaboratory Study
,”
Cardiovasc. Eng. Technol.
,
3
(
2
), pp.
139
160
.
59.
Hariharan
,
P.
,
D'Souza
,
G.
,
Horner
,
M.
,
Malinauskas
,
R. A.
, and
Myers
,
M. R.
,
2015
, “
Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models
,”
ASME J. Biomech. Eng.
,
137
(
9
), p.
094501
.
60.
Trias
,
M.
,
Arbona
,
A.
,
Masso
,
J.
,
Minano
,
B.
, and
Bona
,
C.
,
2014
, “
FDA's Nozzle Numerical Simulation Challenge: Non-Newtonian Fluid Effects and Blood Damage
,”
PLoS One
,
9
(
3
), p.
e92638
.
61.
Steinman
,
D. A.
,
Hoi
,
Y.
,
Fahy
,
P.
,
Morris
,
L.
,
Walsh
,
M. T.
,
Aristokleous
,
N.
,
Anayiotos
,
A. S.
,
Papaharilaou
,
Y.
,
Arzani
,
A.
,
Shadden
,
S. C.
,
Berg
,
P.
,
Janiga
,
G.
,
Bols
,
J.
,
Segers
,
P.
,
Bressloff
,
N. W.
,
Cibis
,
M.
,
Gijsen
,
F. H.
,
Cito
,
S.
,
Pallares
,
J.
,
Browne
,
L. D.
,
Costelloe
,
J. A.
,
Lynch
,
A. G.
,
Degroote
,
J.
,
Vierendeels
,
J.
,
Fu
,
W.
,
Qiao
,
A.
,
Hodis
,
S.
,
Kallmes
,
D. F.
,
Kalsi
,
H.
,
Long
,
Q.
,
Kheyfets
,
V. O.
,
Finol
,
E. A.
,
Kono
,
K.
,
Malek
,
A. M.
,
Lauric
,
A.
,
Menon
,
P. G.
,
Pekkan
,
K.
,
Esmaily Moghadam
,
M.
,
Marsden
,
A. L.
,
Oshima
,
M.
,
Katagiri
,
K.
,
Peiffer
,
V.
,
Mohamied
,
Y.
,
Sherwin
,
S. J.
,
Schaller
,
J.
,
Goubergrits
,
L.
,
Usera
,
G.
,
Mendina
,
M.
,
Valen-Sendstad
,
K.
,
Habets
,
D. F.
,
Xiang
,
J.
,
Meng
,
H.
,
Yu
,
Y.
,
Karniadakis
,
G. E.
,
Shaffer
,
N.
, and
Loth
,
F.
,
2013
, “
Variability of Computational Fluid Dynamics Solutions for Pressure and Flow in a Giant Aneurysm: The ASME 2012 Summer Bioengineering Conference CFD Challenge
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021016
.
62.
Berg
,
P.
,
Roloff
,
C.
,
Beuing
,
O.
,
Voss
,
S.
,
Sugiyama
,
S. I.
,
Aristokleous
,
N.
,
Anayiotos
,
A. S.
,
Ashton
,
N.
,
Revell
,
A.
,
Bressloff
,
N. W.
,
Brown
,
A. G.
,
Chung
,
B. J.
,
Cebral
,
J. R.
,
Copelli
,
G.
,
Fu
,
W.
,
Qiao
,
A.
,
Geers
,
A. J.
,
Hodis
,
S.
,
Dragomir-Daescu
,
D.
,
Nordahl
,
E.
,
Suzen
,
Y. B.
,
Khan
,
M. O.
,
Valen-Sendstad
,
K.
,
Kono
,
K.
,
Menon
,
P. G.
,
Albal
,
P. G.
,
Mierka
,
O.
,
Munster
,
R.
,
Morales
,
H. G.
,
Bonnefous
,
O.
,
Osman
,
J.
,
Goubergrits
,
L.
,
Pallares
,
J.
,
Cito
,
S.
,
Passalacqua
,
A.
,
Piskin
,
S.
,
Pekkan
,
K.
,
Ramalho
,
S.
,
Marques
,
N.
,
Sanchi
,
S.
,
Schumacher
,
K. R.
,
Sturgeon
,
J.
,
Svihlova
,
H.
,
Hron
,
J.
,
Usera
,
G.
,
Mendina
,
M.
,
Xiang
,
J.
,
Meng
,
H.
,
Steinman
,
D. A.
, and
Janiga
,
G.
,
2015
, “
The Computational Fluid Dynamics Rupture Challenge 2013—Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms
,”
ASME J. Biomech. Eng.
,
137
(
12
), p.
121008
.
63.
Chung
,
B.
,
Mut
,
F.
,
Kadirvel
,
R.
,
Lingineni
,
R.
,
Kallmes
,
D. F.
, and
Cebral
,
J. R.
,
2015
, “
Hemodynamic Analysis of Fast and Slow Aneurysm Occlusions by Flow Diversion in Rabbits
,”
J. Neurointerventional Surg.
,
7
(
12
), pp.
931
935
.
64.
Chong
,
W.
,
Zhang
,
Y.
,
Qian
,
Y.
,
Lai
,
L.
,
Parker
,
G.
, and
Mitchell
,
K.
,
2014
, “
Computational Hemodynamics Analysis of Intracranial Aneurysms Treated With Flow Diverters: Correlation With Clinical Outcomes
,”
AJNR
,
35
(
1
), pp.
136
142
.
65.
Pereira
,
V. M.
,
Bonnefous
,
O.
,
Ouared
,
R.
,
Brina
,
O.
,
Stawiaski
,
J.
,
Aerts
,
H.
,
Ruijters
,
D.
,
Narata
,
A. P.
,
Bijlenga
,
P.
,
Schaller
,
K.
, and
Lovblad
,
K. O.
,
2013
, “
A DSA-Based Method Using Contrast-Motion Estimation for the Assessment of the Intra-Aneurysmal Flow Changes Induced by Flow-Diverter Stents
,”
AJNR
,
34
(
4
), pp.
808
815
.
66.
Golitz
,
P.
,
Struffert
,
T.
,
Rosch
,
J.
,
Ganslandt
,
O.
,
Knossalla
,
F.
, and
Doerfler
,
A.
,
2015
, “
Cerebral Aneurysm Treatment Using Flow-Diverting Stents: In-Vivo Visualization of Flow Alterations by Parametric Colour Coding to Predict Aneurysmal Occlusion: Preliminary Results
,”
Eur. Radiol.
,
25
(
2
), pp.
428
435
.
67.
Malaspinas
,
O.
,
Turjman
,
A.
,
Ribeiro de Sousa
,
D.
,
Garcia-Cardena
,
G.
,
Raes
,
M.
,
Nguyen
,
P. T.
,
Zhang
,
Y.
,
Courbebaisse
,
G.
,
Lelubre
,
C.
,
Zouaoui Boudjeltia
,
K.
, and
Chopard
,
B.
,
2016
, “
A Spatio-Temporal Model for Spontaneous Thrombus Formation in Cerebral Aneurysms
,”
J. Theor. Biol.
,
394
, pp.
68
76
.
68.
Peach
,
T. W.
,
Ngoepe
,
M.
,
Spranger
,
K.
,
Zajarias-Fainsod
,
D.
, and
Ventikos
,
Y.
,
2014
, “
Personalizing Flow-Diverter Intervention for Cerebral Aneurysms: From Computational Hemodynamics to Biochemical Modeling
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
11
), pp.
1387
1407
.
You do not currently have access to this content.